Skip to main content

Advertisement

Log in

Transgenic Silkworms Overexpressing Relish and Expressing Drosomycin Confer Enhanced Immunity to Multiple Pathogens

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The sericulture industry faces substantial economic losses due to severe pathogenic infections caused by fungi, viruses, and bacteria. The development of transgenic silkworms against specific pathogens has been shown to enhance disease resistance against a particular infection. A single gene or its products that can confer protection against multiple pathogens is required. In an attempt to develop silkworms with enhanced immunity against multiple pathogens, we generated transgenic silkworm lines with an overexpressed NF-kB transcription factor, Relish 1, under two different promoters. Separately, a potent anti-fungal gene, Drosomycin, was also expressed in transgenic silkworms. Both Relish 1 and Drosomycin transgenic silkworms had single copy genomic integration, and their mRNA expression levels were highly increased after infection with silkworm pathogens. The overexpression of the Relish 1 in transgenic silkworms resulted in the upregulation of several defense-related genes, Cecropin B, Attacin, and Lebocin, and showed enhanced resistance to Nosema bombycis (microsporidian fungus), Nucleopolyhedrovirus (BmNPV), and bacteria. The Drosomycin expressing transgenic silkworms showed elevated resistance to N. bombycis and bacteria. These findings demonstrate the role of Relish 1 in long-lasting protection against multiple pathogens in silkworms. Further, the successful introduction of a foreign gene, Drosomycin, also led to improved disease resistance in silkworms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ravikumar, G., Raje Urs, S., Vijaya Prakash, N. B., Rao, C. G., & Vardhana, K. V. (2011). Development of a multiplex polymerase chain reaction for the simultaneous detection of microsporidians, nucleopolyhedrovirus, and densovirus infecting silkworms. Journal of Invertebrate Pathology, 107, 193–197.

    Article  CAS  PubMed  Google Scholar 

  2. Tayal, M. K., & Chauhan, T. P. S. (2017). Silkworm diseases and pests. Industrial entomology (pp. 265–289). Springer.

    Chapter  Google Scholar 

  3. Xia, Q., Li, S., & Feng, Q. (2014). Advances in silkworm studies accelerated by the genome sequencing of Bombyx mori. Annual Review of Entomology, 59, 513–536.

    Article  CAS  PubMed  Google Scholar 

  4. Jiang, L., & Xia, Q. (2014). The progress and future of enhancing antiviral capacity by transgenic technology in the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology, 48, 1–7.

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, L., Goldsmith, M. R., & Xia, Q. (2021). Advances in the arms race between silkworm and baculovirus. Frontiers in Immunology, 12, 628151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kanginakudru, S., Royer, C., Edupalli, S. V., Jalabert, A., Mauchamp, B., Chandrashekaraiah, Prasad, S. V., Chavancy, G., Couble, P., & Nagaraju, J. (2007). Targeting ie-1 gene by RNAi induces baculoviral resistance in Lepidopteran cell lines and in transgenic silkworms. Insect Molecular Biology, 16, 635–644.

    Article  CAS  PubMed  Google Scholar 

  7. Jiang, L., Wang, G., Cheng, T., Yang, Q., Jin, S., Lu, G., Wu, F., Xiao, Y., Xu, H., & Xia, Q. (2012). Resistance to Bombyx mori nucleopolyhedrovirus via overexpression of an endogenous antiviral gene in transgenic silkworms. Archives of Virology, 157, 1323–1328.

    Article  CAS  PubMed  Google Scholar 

  8. Jiang, L., Cheng, T., Zhao, P., Yang, Q., Wang, G., Jin, S., Lin, P., Xiao, Y., & Xia, Q. (2012). Resistance to BmNPV via overexpression of an exogenous gene controlled by an inducible promoter and enhancer in transgenic silkworm Bombyx mori. PLoS ONE, 7, e41838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, J. G., Liu, T. H., Dong, X. L., Wu, Y. F., Zhang, Q., Zhou, L., Chen, P., Lu, C., & Pan, M. H. (2017). In vivo RNA interference of BmNHR96 enhances the resistance of transgenic silkworm to BmNPV. Biochemical and Biophysical Research Communications, 493, 332–339.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, P., Xia, F., Jiang, L., Guo, H., Xu, G., Sun, Q., Wang, B., Wang, Y., Lu, Z., & Xia, Q. (2018). Enhanced antiviral immunity against Bombyx mori cytoplasmic polyhedrosis virus via overexpression of peptidoglycan recognition protein S2 in transgenic silkworms. Developmental & Comparative Immunology, 87, 84–89.

    Article  CAS  Google Scholar 

  11. Dong, Z., Long, J., Huang, L., Hu, Z., Chen, P., Hu, N., Zheng, N., Huang, X., Lu, C., & Pan, M. (2019). Construction and application of an HSP70 promoter–inducible genome editing system in transgenic silkworm to induce resistance to Nosema bombycis. Applied Microbiology and Biotechnology, 103, 9583–9592.

    Article  CAS  PubMed  Google Scholar 

  12. Jiang, L., Liu, W., Guo, H., Dang, Y., Cheng, T., Yang, W., Sun, Q., Wang, B., Wang, Y., Xie, E., & Xia, Q. (2019). Distinct functions of Bombyx mori peptidoglycan recognition protein 2 in immune responses to bacteria and viruses. Frontiers in Immunology, 10, 776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu, J., Luo, X., Fang, G., Zhan, S., Wu, J., Wang, D., & Huang, Y. (2020). Transgenic expression of antimicrobial peptides from black soldier fly enhance resistance against entomopathogenic bacteria in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 127, 103487.

    Article  CAS  PubMed  Google Scholar 

  14. Guo, H., Sun, Q., Wang, B., Wang, Y., Xie, E., Xia, Q., & Jiang, L. (2019). Spry is downregulated by multiple viruses to elevate ERK signaling and ensure viral reproduction in silkworm. Development and Comparative Immunology, 98, 1–5.

    Article  CAS  Google Scholar 

  15. Jiang, L. (2021). Insights into the antiviral pathways of the silkworm Bombyx mori. Frontiers in Immunology, 12, 639092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hedengren, M., Dushay, M. S., Ando, I., Ekengren, S., Wihlborg, M., & Hultmark, D. (1999). Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Molecular Cell, 4, 827–837.

    Article  CAS  PubMed  Google Scholar 

  17. Schluns, H., & Crozier, R. H. (2007). Relish regulates expression of antimicrobial peptide genes in the honeybee, Apis mellifera, shown by RNA interference. Insect Molecular Biology, 16, 753–759.

    Article  CAS  PubMed  Google Scholar 

  18. Antonova, Y., Alvarez, K. S., Kim, Y. J., Kokoza, V., & Raikhel, A. S. (2009). The role of NF-κB factor REL2 in the Aedes aegypti immune response. Insect Biochemistry and Molecular Biology, 39, 303–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lemaitre, B., Reichhart, J. M., & Hoffmann, J. A. (1997). Drosophila host defense: Differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proceedings of the National Academy of Sciences, 94, 14614–14619.

    Article  CAS  Google Scholar 

  20. Tanaka, H., Matsuki, H., Furukawa, S., Sagisaka, A., Kotani, E., Mori, H., & Yamakawa, M. (2007). Identification and functional analysis of Relish homologs in the silkworm, Bombyx mori. Biochimica et Biophysica Acta, 1769, 559–568.

    Article  CAS  PubMed  Google Scholar 

  21. Tanaka, H., Ishibashi, J., Fujita, K., Nakajima, Y., Sagisaka, A., Tomimoto, K., Suzuki, N., Yoshiyama, M., Kaneko, Y., Iwasaki, T., & Sunagawa, T., Yamaji, K., Asaoka, A., Mita, K., & Yamakawa, M. (2008). A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochemistry and Molecular Biology, 38, 1087–1110.

    Article  CAS  PubMed  Google Scholar 

  22. Fehlbaum, P., Bulet, P., Michaut, L., Lagueux, M., Broekaert, W. F., Hetru, C., & Hoffmann, J. A. (1994). Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. Journal of Biological Chemistry, 269, 33159–33163.

    Article  CAS  PubMed  Google Scholar 

  23. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M., & Hoffmann, J. A. (1996). The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 86, 973–983.

    Article  CAS  PubMed  Google Scholar 

  24. Landon, C., Sodano, P., Hetru, C., Hoffmann, J., & Ptak, M. (1997). Solution structure of Drosomycin, the first inducible antifungal protein from insects. Protein Science, 6, 1878–1884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ullal, S., R., & Narasimhanna, M. N. (1994). Hand book of sericulture. In Sampath, J. (Ed). Central Silk Board.

  26. Tamura, T., Thibert, C., Royer, C., Kanda, T., Abraham, E., Kamba, M., Komoto, N., Thomas, J. L., Mauchamp, B., Chavancy, G., Shirk Transgenic Res 123 P, Fraser, M., Prudhomme, J. C., & Couble, P. (2000). Germline transformation of the silkworm Bombyx mori. using a piggyBac transposon-derived vector. Nature Biotechnology, 8, 81–84.

    Article  CAS  Google Scholar 

  27. Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols., 3, 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  28. Handler, A. M., McCombs, S. D., Fraser, M. J., & Saul, S. H. (1998). The Lepidopteran transposon vector, piggyBac, mediates germline transformation in the Mediterranean fruit fly. Proceedings of the National Academy of Sciences, 95, 7520–7525.

    Article  CAS  Google Scholar 

  29. Guo, X. Y., Dong, L., Wang, S. P., Guo, T. Q., Wang, J. Y., & Lu, C. D. (2004). Introduction of foreign genes into silkworm eggs by electroporation and its application in transgenic vector test. Acta Biochimia et Biophysia Sinica, 36, 323–330.

    Article  Google Scholar 

  30. Huang, L., Cheng, T., Xu, P., Fang, T., & Xia, Q. (2012). Bombyx mori transcription factors: Genome-wide identification, expression profiles and response to pathogens by microarray analysis. Journal of Insect Science, 12, 1–24.

    CAS  Google Scholar 

  31. Li, Z. H., Pan, G. Q., Ma, Z. G., Han, B., Sun, B., Ni, Q., Chen, J., Li, T., Liu, T. B., Long, M. X., Li, C. F., & Zhou, Z. (2017). Comparative proteomic analysis of differentially expressed proteins in the Bombyx mori fat body during the microsporidia, Nosema bombycis infection. Invertebrate Pathology, 149, 36–43.

    Article  CAS  Google Scholar 

  32. Hua, X., Li, B., Song, L., Hu, C., Li, X., Wang, D., Xiong, Y., Zhao, P., He, H., Xia, Q., & Wang, F. (2018). Stimulator of interferon genes (STING) provides insect antiviral immunity by promoting Dredd caspase-mediated NF-κB activation. Journal of Biologial Chemistry, 293, 11878–11890.

    Article  CAS  Google Scholar 

  33. Hungund, S. P., Pradeep, A. N. R., Makwana, P., Sagar, C., & Mishra, R. K. (2020). Cellular defence and innate immunity in the larval ovarian disc and differentiated ovariole of the silkworm Bombyx mori induced by microsporidian infection. Invertebrate Reprodution and Development, 64, 10–21.

    Article  CAS  Google Scholar 

  34. Hua, X., Xu, W., Ma, S., & Xia, Q. (2021). STING-dependent autophagy suppresses Nosema bombycis infection in silkworm, Bombyx mori. Developmental and Comparative Immunology, 115, 103862.

    Article  CAS  PubMed  Google Scholar 

  35. Dong, Y., Das, S., Cirimotich, C., Souza-Neto, J. A., McLean, K. J., & Dimopoulos, G. (2011). Engineered Anopheles immunity to Plasmodium infection. PLoS Pathogen, 7, e1002458.

    Article  CAS  Google Scholar 

  36. De Gregorio, E., Spellman, P. T., Tzou, P., Rubin, G. M., & Lemaitre, B. (2002). The Toll and Imd pathways are the major regulators of the immune response in Drosophila. The EMBO Journal, 21, 2568–2579.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tanaka, H., Sagisaka, A., Nakajima, Y., Fujita, K., Imanishi, S., & Yamakawa, M. (2009). Correlation of differential expression of silkworm antimicrobial peptide genes with different amounts of rel family proteins and their gene transcriptional activity. Bioscience, Biotechnology, and Biochemistry, 73, 599–606.

    Article  CAS  PubMed  Google Scholar 

  38. Keshavarz, M., Jo, Y. H., Park, K. B., Ko, H. J., Edosa, T. T., Lee, Y. S., & Han, Y. S. (2019). Tm DorX2 positively regulates antimicrobial peptides in Tenebrio molitor gut, fat body, and hemocytes in response to bacterial and fungal infection. Scientific Reports, 9, 1–19.

    Article  CAS  Google Scholar 

  39. Subbaiah, E. V., Royer, C., Kanginakudru, S., Satyavathi, V. V., Babu, A. S., Sivaprasad, V., Chavancy, G., Darocha, M., Jalabert, A., Mauchamp, B., Basha, I., Couble, P., & Nagaraju, J. (2013). Engineering silkworms for resistance to baculovirus through multigene RNA interference. Genetics, 193, 63–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiang, L., Peng, Z., Guo, H., Sun, J., Sun, Q., Xia, F., Huang, C., Xu, G., & Xia, Q. (2017). Enhancement of antiviral capacity of transgenic silkworms against cytoplasmic polyhedrosis virus via knockdown of multiple viral genes. Developmental & Comparative Immunology, 77, 138–140.

    Article  CAS  Google Scholar 

  41. Sun, Q., Jiang, L., Guo, H., Xia, F., Wang, B., Wang, Y., Xia, Q., & Zhao, P. (2018). Increased antiviral capacity of transgenic silkworm via knockdown of multiple genes on Bombyx mori bidensovirus. Developmental & Comparative Immunology, 87, 188–192.

    Article  CAS  Google Scholar 

  42. Valanne, S., Wang, J. H., & Ramet, M. (2011). The Drosophila toll signaling pathway. The Journal of Immunology, 186, 649–656.

    Article  CAS  PubMed  Google Scholar 

  43. Tian, C., Gao, B., del Carmen Rodriguez, M., Lanz-Mendoza, H., Ma, B., & Zhu, S. (2008). Gene expression, antiparasitic activity, and functional evolution of the drosomycin family. Molecular Immunology, 45, 3909–3916.

    Article  CAS  PubMed  Google Scholar 

  44. Keeling, P. (2009). Five questions about microsporidia. PLoS Pathogen, 5, e1000489.

    Article  CAS  Google Scholar 

  45. Roxstrom-Lindquist, K., Terenius, O., & Faye, I. (2004). Parasite-specific immune response in adult Drosophila melanogaster: A genomic study. EMBO Reports, 5, 207–212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Tzou, P., Reichhart, J. M., & Lemaitre, B. (2002). Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proceedings of the National Academy of Sciences, 99, 2152–2157.

    Article  CAS  Google Scholar 

  47. Michel, T., Reichhart, J. M., Hoffmann, J. A., & Royet, J. (2001). Drosophila Toll is activated by gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature, 414, 756–759.

    Article  CAS  PubMed  Google Scholar 

  48. Ma, Z., Li, C., Pan, G., Li, Z., Han, B., Xu, J., Lan, X., Chen, J., Yang, D., Chen, Q., & Sang, Q. (2013). Genome-wide transcriptional response of silkworm (Bombyx mori) to infection by the microsporidian Nosema bombycis. PLoS ONE, 8, e84137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zambon, R. A., Nandakumar, M., Vakharia, V. N., & Wu, L. P. (2005). The Toll pathway is important for an antiviral response in Drosophila. Proceedings of the National Academy of Sciences, 102, 7257–7262.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant (No. AIT 3540) to RG and UN from Central Silk Board (CSB), Bengaluru, India. RSY, DST, CM, and GR are thankful to CSB for providing research fellowships.

Author information

Authors and Affiliations

Authors

Contributions

RSY performed experiments, data organization and analysis, and writing-first draft. DST, CM, and GR assisted in experiments, data organization and analysis, and writing-review. VK analyzed the data and review. RKM performed funding acquisition, resources and coordination. UN guided in experiments, supervision, writing-review and editing. RG did conceptualization, funding acquisition, guidance in experiments, supervision, and writing-review and editing.

Corresponding author

Correspondence to Ravikumar Gopalapillai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rasalkar Sandhya Yashwant—Research Scholar of Jain University, Bengaluru, India under the guidance of RG.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 268 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yashwant, R.S., Thomas, D.S., Manoharan, C. et al. Transgenic Silkworms Overexpressing Relish and Expressing Drosomycin Confer Enhanced Immunity to Multiple Pathogens. Mol Biotechnol 64, 711–724 (2022). https://doi.org/10.1007/s12033-021-00438-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00438-0

Keywords

Navigation