Skip to main content
Log in

Characterization of a Novel Mannose Isomerase from Stenotrophomonas rhizophila and Identification of Its Possible Catalytic Residues

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

D-Mannose has great value in the treatment of chronic diseases. D-Mannose isomerase can catalyze the bioconversion of D-fructose to D-mannose. Therefore, a novel D-mannose isomerase gene (Strh-MIase) from Stenotrophomonas rhizophila strain IS26 was expressed, purified, and characterized for the industrial production of D-mannose. The specific activities of the Strh-MIase for D-mannose and D-fructose were 437.5 ± 0.8 U/mg and 267.2 ± 0.7 U/mg. Its optimal temperature and pH were 50 °C and 7.0. The enzymatic bioconversion produced 25 g/L D-mannose from concentration D-fructose (100 g/L) in 6 h by recombinant Strh-MIase, resulting in a final yield of 25%. Sodium phosphate inhibition has little influence on D-mannose production when a high concentration of D-fructose is used as substrate. We demonstrate that the metal ions improve the efficiency of D-mannose isomerase because of the enhancement of its thermostability. Moreover, the possible catalytic residues of Strh-MIase were identified by site-directed mutagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xiao, Y., Chen, Q., Guang, C., Zhang, W., & Mu, W. (2019). An overview on biological production of functional lactose derivatives. Applied Microbiology and Biotechnology, 103(9), 3683–3691.

    Article  CAS  Google Scholar 

  2. Zhang, D., Chia, C., Jiao, X., Jin, W., Kasagi, S., Wu, R., Konkel, J. E., Nakatsukasa, H., & Zanvit, P. N. (2017). Goldberg, D-mannose induces regulatory T cells and suppresses immunopathology. Nature Medicine, 23(9), 1036–1045.

    Article  CAS  Google Scholar 

  3. Kranjčec, B., Papeš, D., & Altarac, S. (2014). D-mannose powder for prophylaxis of recurrent urinary tract infections in women: A randomized clinical trial. World Journal of Urology, 32(1), 79–84.

    Article  Google Scholar 

  4. Hu, X., Shi, Y., Zhang, P., Miao, M., & Zhang, T. (2016). B. Jiang, D-Mannose: properties, production, and applications: an overview. Comprehensive Reviews in Food Science and Food Safety, 15(4), 773–785.

  5. Gonzalez, P. S., O’Prey, J., Cardaci, S., Barthet, V. J. A., Sakamaki, J.-I., Beaumatin, F., Roseweir, A., Gay, D. M., Mackay, G., Malviya, G., Kania, E., Ritchie, S., Baudot, A. D., Zunino, B., Mrowinska, A., Nixon, C., Ennis, D., Hoyle, A., Millan, D., … Ryan, K. M. (2018). Mannose impairs tumour growth and enhances chemotherapy. Nature, 563(7733), 719–723.

    Article  CAS  Google Scholar 

  6. Luo, Q., Zhang, Y., Qi, L., & Scott, S. L. (2019). Glucose isomerization and epimerization over metal-organic frameworks with single-site active centers. ChemCatChem, 11(7), 1903–1909.

    Article  CAS  Google Scholar 

  7. Basu, A., Ghosh, S. K., Saha, R., Ghosh, A., Mukherjee, K., & Saha, B. (2013). Combination of best promoter and micellar catalyst for chromic acid oxidation of D-mannitol to mannose in aqueous media. Tenside, Surfactants, Detergents, 50(4), 249–258.

    Article  CAS  Google Scholar 

  8. Hricoviniova., Z. (2011). Rapid, one pot preparation of D-mannose and D-mannitol from starch: the effect of microwave irradiation and MoVI catalyst. Tetrahedron Asymmetry, 22(11), 1184–1188.

    Article  Google Scholar 

  9. Saburi, W., Sato, S., Hashiguchi, S., Muto, H., Iizuka, T., & Mori, H. (2019). Enzymatic characteristics of D-mannose 2-epimerase, a new member of the acylglucosamine 2-epimerase superfamily. Applied Microbiology and Biotechnology., 103(16), 6559–6570.

    Article  CAS  Google Scholar 

  10. Chen, Q., Xiao, Y., Zhang, W., Zhang, T., Jiang, B., Stressler, T., Fischer, L., & Mu, W. (2018). Current research on cellobiose 2-epimerase: Enzymatic properties, mechanistic insights, and potential applications in the dairy industry. Trends in Food Science & Technology, 82, 167–176.

    Article  CAS  Google Scholar 

  11. Huang, J., Chen, Z., Zhang, W., Zhang, T., & Mu, W. (2018). D-lyxose isomerase and its application for functional sugar production. Applied Microbiology and Biotechnology., 102(5), 2051–2062.

    Article  CAS  Google Scholar 

  12. Chen, Q., Levin, R., Zhang, W., Zhang, T., Jiang, B., Stressler, T., Fischer, L., & Mu, W. (2017). Characterisation of a novel cellobiose 2-epimerase from thermophilic Caldicellulosiruptor obsidiansis for lactulose production. Journal of the Science of Food and Agriculture, 97(10), 3095–3105.

    Article  CAS  Google Scholar 

  13. Zhang, W., Huang, J., Jia, M., Guang, C., Zhang, T., & Mu, W. (2019). Characterization of a novel D-lyxose isomerase from Thermoflavimicrobium dichotomicum and its application for D-mannose production. Process Biochemistry, 83, 131–136.

    Article  CAS  Google Scholar 

  14. Jin, P., Wang, Y., Liang, Z., Yuan, M., Li, H., & Du, Q. (2021). Efficient bioconversion of high-concentration D-fructose into D-mannose by a novel N-acyl-D-glucosamine 2-epimerase from Thermobifida halotolerans. Catalysis Science & Technology, 11(5), 1992–1930.

    Article  Google Scholar 

  15. Hua, X., Li, Y., Jiang, Z., Ma, J., Liu, H., & Yan, Q. (2021). Biochemical properties of a novel D-Mannose isomerase from Pseudomonas syringae for D-Mannose production. Applied Biochemistry and Biotechnology, 193, 1482–1495.

    Article  CAS  Google Scholar 

  16. Saburi, W., Jaito, N., Kato, K., Tanaka, Y., Yao, M., & Mori, H. (2018). Biochemical and structural characterization of Marinomonas mediterranea D-mannose isomerase Marme_2490 phylogenetically distant from known enzymes. Biochimie, 144, 63–73.

    Article  CAS  Google Scholar 

  17. Chen, Q., Wu, Y., Huang, Z., & Zhang, W. (2021). Kinetic study and molecular dynamics dimulation of two novel mannose isomerases. Catalysis Science & Technology. https://doi.org/10.1039/D1CY00577D

    Article  Google Scholar 

  18. Kasumi, T., Mori, S., Kaneko, S., Matsumoto, H., Kobayashi, Y., & Koyama, Y. (2014). Characterization of mannose isomerase from a cellulolytic actinobacteria Thermobifida fusca MBL10003. Journal of Applied Glycoscience, 61(1), 21–25.

    Article  CAS  Google Scholar 

  19. Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2012). GenBank. Nucleic Acids Research, 41(D1), D36–D42.

    Article  Google Scholar 

  20. Sudhir, K., Glen, S., Li, M., Christina, K., & Koichiro, T. (2018). Mega X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology & Evolution, 6, 6.

    Google Scholar 

  21. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.

    CAS  PubMed  Google Scholar 

  22. Zuckerkandl, E., & Pauling, L. (1965). Evolutionary divergence and convergence in proteins, evolving genes and proteins (pp. 97–166). NY: Elsevier.

    Book  Google Scholar 

  23. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589.

    Article  CAS  Google Scholar 

  24. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242.

    Article  CAS  Google Scholar 

  25. Hirose, J., Maeda, K., Yokoi, H., & Takasaki, Y. (2001). Purification and characterization of mannose isomerase from Agrobacterium radiobacter M-1. Bioscience, Biotechnology, and Biochemistry, 65(3), 658–661.

    Article  CAS  Google Scholar 

  26. Beadle, B. M., & Shoichet, B. K. (2002). Structural bases of stability–function tradeoffs in enzymes. Journal of Molecular Biology, 321(2), 285–296.

    Article  CAS  Google Scholar 

  27. Fromer, M., & Shifman, J. M. (2009). Tradeoff between stability and multispecificity in the design of promiscuous proteins. PLoS Computational Biology, 5(12), e1000627.

    Article  Google Scholar 

  28. Gosavi, S., & Koby, L. (2013). Understanding the folding-function tradeoff in proteins. PLoS ONE, 8(4), e61222.

    Article  CAS  Google Scholar 

  29. Chen, Q., Xiao, Y., Shakhnovich, E. I., Zhang, W., & Mu, W. (2020). Semi-rational design and molecular dynamics simulations study of the thermostability enhancement of cellobiose 2-epimerases. International Journal of Biological Macromolecules, 154, 1356–1365.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (No. 32001636 and 31801583) and the Natural Science Foundation of Jiangsu Province (No. BK20200594 and BK20180607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuming Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Huang, Z., Zhang, W. et al. Characterization of a Novel Mannose Isomerase from Stenotrophomonas rhizophila and Identification of Its Possible Catalytic Residues. Mol Biotechnol 64, 650–659 (2022). https://doi.org/10.1007/s12033-021-00437-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00437-1

Keywords

Navigation