Skip to main content

Advertisement

Log in

LncRNA NEAT1 Promotes TLR4 Expression to Regulate Lipopolysaccharide-Induced Trophoblastic Cell Pyroptosis as a Molecular Sponge of miR-302b-3p

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Pyroptosis is an inflammation-triggered cell death caused by certain inflammasomes, and long non-coding RNAs (lncRNAs) are related to cell pyroptosis. This study evaluated the mechanism of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) on lipopolysaccharide (LPS)-induced trophoblastic cells pyroptosis. HTR-8/Svneo trophoblastic cells were treated with LPS. The expression of lncRNA NEAT1 was decreased using siRNAs, followed by the evaluation of cell proliferation, Caspase-1 activity, levels of Cleaved Caspase-1 and gasdermin D-N, and the concentrations of Interleukin (IL)-1β and IL-18. We found that LPS promoted the pyroptosis of HTR-8/Svneo cells, and lncRNA NEAT1 was highly expressed in LPS-treated HTR-8/Svneo cells while silencing lncRNA NEAT1 inhibited LPS-induced trophoblastic cells pyroptosis. The subcellular localization of lncRNA NEAT1 was detected. Dual-luciferase gene experiment and RNA pull-down assay detected that lncRNA NEAT1 bound to miR-302b-3p and could inhibit miR-302b-3p, and toll-like receptor 4 (TLR4) was the target gene of miR-302b-3p. Then, a joint experiment was designed for detection, which found that miR-302b-3p downregulation partially reversed the inhibition of silencing lncRNA NEAT1 on LPS-induced trophoblastic cells pyroptosis and overexpression of TLR4 annulled the inhibition of silencing lncRNA NEAT1 on LPS-induced trophoblastic cells pyroptosis. Therefore, lncRNA NEAT1 promoted the transcription of TLR4 by competitively binding to miR-302b-3p, thus promoting LPS-induced trophoblastic cells pyroptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support this study are available from the corresponding author upon reasonable request.

References

  1. Staud, F., & Karahoda, R. (2018). Trophoblast: The central unit of fetal growth, protection and programming. International Journal of Biochemistry and Cell Biology, 105, 35–40.

    Article  CAS  PubMed  Google Scholar 

  2. Rampersad, R., & Nelson, D. M. (2007). Trophoblast biology, responses to hypoxia and placental dysfunction in preeclampsia. Frontiers in Bioscience, 12, 2447–2456.

    Article  CAS  PubMed  Google Scholar 

  3. Horii, M., Touma, O., Bui, T., & Parast, M. M. (2020). Modeling human trophoblast, the placental epithelium at the maternal fetal interface. Reproduction, 160, R1–R11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tao, J., Xia, L. Z., Liang, L., Chen, Y., Wei, D., Meng, J., Wu, S., & Wang, Z. (2020). MiR-124-3p promotes trophoblast cell HTR-8/SVneo pyroptosis by targeting placental growth factor. Placenta, 101, 176–184.

    Article  CAS  PubMed  Google Scholar 

  5. Cheng, S. B., Nakashima, A., Huber, W. J., Davis, S., Banerjee, S., Huang, Z., Saito, S., Sadovsky, Y., & Sharma, S. (2019). Pyroptosis is a critical inflammatory pathway in the placenta from early onset preeclampsia and in human trophoblasts exposed to hypoxia and endoplasmic reticulum stressors. Cell Death and Disease, 10, 927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu, S. Y., & Li, X. L. (2021). Pyroptosis and inflammasomes in obstetrical and gynecological diseases. Gynecological Endocrinology, 37, 385–391.

    Article  CAS  PubMed  Google Scholar 

  7. Quan, X. Z., Ye, J. H., Yang, X. Z., & Xie, Y. (2021). HOXA9-induced chemerin signals through CMKLR1/AMPK/TXNIP/NLRP3 pathway to induce pyroptosis of trophoblasts and aggravate preeclampsia. Experimental Cell Research, 408, 112802.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, S., Duan, J., Du, Y., Xie, J., Zhang, H., Li, C., & Zhang, W. (2021). Long non-coding RNA signatures associated with liver aging in senescence-accelerated mouse prone 8 model. Frontiers in Cell and Developmental Biology, 9, 698442.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Robinson, E. K., Covarrubias, S., & Carpenter, S. (2020). The how and why of lncRNA function: An innate immune perspective. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1863, 194419.

    Article  CAS  Google Scholar 

  10. Zhan, J. F., Huang, H. W., Huang, C., Hu, L. L., & Xu, W. W. (2020). Long non-coding RNA NEAT1 regulates pyroptosis in diabetic nephropathy via mediating the miR-34c/NLRP3 axis. Kidney & Blood Pressure Research, 45, 589–602.

    Article  CAS  Google Scholar 

  11. Xufei, F., Xiujuan, Z., Jianyi, L., Liyan, Y., Ting, Y., & Min, H. (2020). Up-regulation of LncRNA NEAT1 induces apoptosis of human placental trophoblasts. Free Radical Research, 54, 678–686.

    Article  PubMed  CAS  Google Scholar 

  12. Teng, L., Liu, P., Song, X., Wang, H., Sun, J., & Yin, Z. (2020). Long non-coding RNA nuclear-enriched abundant transcript 1 (NEAT1) represses proliferation of trophoblast cells in rats with preeclampsia via the microRNA-373/FLT1 axis. Medical Science Monitor, 26, e927305.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Qi, X., Zhang, D. H., Wu, N., Xiao, J. H., Wang, X., & Ma, W. (2015). ceRNA in cancer: Possible functions and clinical implications. Journal of Medical Genetics, 52, 710–718.

    Article  PubMed  CAS  Google Scholar 

  14. Chen, L., Zhou, Y., & Li, H. (2018). LncRNA, miRNA and lncRNA-miRNA interaction in viral infection. Virus Research, 257, 25–32.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, L., Heikkinen, L., Wang, C., Yang, Y., Sun, H., & Wong, G. (2019). Trends in the development of miRNA bioinformatics tools. Briefings in Bioinformatics, 20, 1836–1852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, Z., Wang, N., Zhang, Y., Zhao, J., & Lv, J. (2019). Downregulation of microRNA-302b-3p relieves oxygen-glucose deprivation/re-oxygenation induced injury in murine hippocampal neurons through up-regulating Nrf2 signaling by targeting fibroblast growth factor 15/19. Chemico-Biological Interactions, 309, 108705.

    Article  CAS  PubMed  Google Scholar 

  17. Akgor, U., Ayaz, L., & Cayan, F. (2021). Expression levels of maternal plasma microRNAs in preeclamptic pregnancies. Journal of Obstetrics and Gynaecology, 41, 910–914.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Y., Zhu, X., Yuan, S., Wen, S., Liu, X., Wang, C., Qu, Z., Li, J., Liu, H., Sun, L., & Liu, F. (2019). TLR4/NF-kappaB signaling induces GSDMD-related pyroptosis in tubular cells in diabetic kidney disease. Front Endocrinol (Lausanne), 10, 603.

    Article  Google Scholar 

  19. Tavakoli Dargani, Z., & Singla, D. K. (2019). Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis. American Journal of Physiology-Heart and Circulatory Physiology, 317, H460–H471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Firmal, P., Shah, V. K., & Chattopadhyay, S. (2020). Insight into TLR4-mediated immunomodulation in normal pregnancy and related disorders. Frontiers in Immunology, 11, 807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fan, M., Li, X., Gao, X., Dong, L., Xin, G., Chen, L., Qiu, J., & Xu, Y. (2019). LPS induces preeclampsia-like phenotype in rats and HTR8/SVneo cells dysfunction through TLR4/p38 MAPK pathway. Frontiers in Physiology, 10, 1030.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xue, P., Fan, W., Diao, Z., Li, Y., Kong, C., Dai, X., Peng, Y., Chen, L., Wang, H., Hu, Y., & Hu, Z. (2020). Up-regulation of PTEN via LPS/AP-1/NF-kappaB pathway inhibits trophoblast invasion contributing to preeclampsia. Molecular Immunology, 118, 182–190.

    Article  CAS  PubMed  Google Scholar 

  23. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  24. Li, J. H., Liu, S., Zhou, H., Qu, L. H., & Yang, J. H. (2014). starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research, 42, D92-97.

    Article  CAS  PubMed  Google Scholar 

  25. Agarwal, V., Bell, G. W., Nam, J. W., & Bartel, D. P. (2015). Predicting effective microRNA target sites in mammalian mRNAs. Elife. https://doi.org/10.7554/eLife.05005

    Article  PubMed  PubMed Central  Google Scholar 

  26. Baines, K. J., & Renaud, S. J. (2017). Transcription factors that regulate trophoblast development and function. Progress in Molecular Biology and Translational Science, 145, 39–88.

    Article  CAS  PubMed  Google Scholar 

  27. Gamage, T., Schierding, W., Hurley, D., Tsai, P., Ludgate, J. L., Bhoothpur, C., Chamley, L. W., Weeks, R. J., Macaulay, E. C., & James, J. L. (2018). The role of DNA methylation in human trophoblast differentiation. Epigenetics, 13, 1154–1173.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wu, D., Wei, C., Li, Y., Yang, X., & Zhou, S. (2021). Pyroptosis, a new breakthrough in cancer treatment. Frontiers in Oncology, 11, 698811.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang, P., Cao, L., Zhou, R., Yang, X., & Wu, M. (2019). The lncRNA Neat1 promotes activation of inflammasomes in macrophages. Nature Communications, 10, 1495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Shi, J., Gao, W., & Shao, F. (2017). Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends in Biochemical Sciences, 42, 245–254.

    Article  CAS  PubMed  Google Scholar 

  31. Qiu, Z., He, Y., Ming, H., Lei, S., Leng, Y., & Xia, Z. Y. (2019). Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced Injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. Journal of Diabetes Research, 2019, 8151836.

    PubMed  PubMed Central  Google Scholar 

  32. Liang, J., Wang, Q., Li, J. Q., Guo, T., & Yu, D. (2020). Long non-coding RNA MEG3 promotes cerebral ischemia-reperfusion injury through increasing pyroptosis by targeting miR-485/AIM2 axis. Experimental Neurology, 325, 113139.

    Article  CAS  PubMed  Google Scholar 

  33. Mao, Q., Liang, X. L., Zhang, C. L., Pang, Y. H., & Lu, Y. X. (2019). LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138-5p/Sirt1 axis. Stem Cell Research and Therapy, 10, 393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wan, P., Su, W., Zhang, Y., Li, Z., Deng, C., Li, J., Jiang, N., Huang, S., Long, E., & Zhuo, Y. (2020). LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury. Cell Death and Differentiation, 27, 176–191.

    Article  CAS  PubMed  Google Scholar 

  35. Xu, X. E., Liu, L., Wang, Y. C., Wang, C. T., Zheng, Q., Liu, Q. X., Li, Z. F., Bai, X. J., & Liu, X. H. (2019). Caspase-1 inhibitor exerts brain-protective effects against sepsis-associated encephalopathy and cognitive impairments in a mouse model of sepsis. Brain, Behavior, and Immunity, 80, 859–870.

    Article  CAS  PubMed  Google Scholar 

  36. Li, N., Zhou, H., Wu, H., Wu, Q., Duan, M., Deng, W., & Tang, Q. (2019). STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biology, 24, 101215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, H. S., Ouyang, B., Ji, X. Y., & Liu, M. F. (2021). Gastrodin alleviates cerebral ischaemia/reperfusion injury by inhibiting pyroptosis by regulating the lncRNA NEAT1/miR-22-3p axis. Neurochemical Research, 46, 1747–1758.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao, Z., Sun, W., Guo, Z., Zhang, J., Yu, H., & Liu, B. (2020). Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sciences, 254, 116900.

    Article  CAS  PubMed  Google Scholar 

  39. Paraskevopoulou, M. D., & Hatzigeorgiou, A. G. (2016). Analyzing MiRNA-LncRNA interactions. Methods in Molecular Biology, 1402, 271–286.

    Article  CAS  PubMed  Google Scholar 

  40. Yang, F., Qin, Y., Wang, Y., Li, A., Lv, J., Sun, X., Che, H., Han, T., Meng, S., Bai, Y., & Wang, L. (2018). LncRNA KCNQ1OT1 mediates pyroptosis in diabetic cardiomyopathy. Cellular Physiology and Biochemistry, 50, 1230–1244.

    Article  CAS  PubMed  Google Scholar 

  41. Li, X., Zeng, L., Cao, C., Lu, C., Lian, W., Han, J., Zhang, X., Zhang, J., Tang, T., & Li, M. (2017). Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. Experimental Cell Research, 350, 327–335.

    Article  CAS  PubMed  Google Scholar 

  42. Song, Y., Yang, L., Guo, R., Lu, N., Shi, Y., & Wang, X. (2019). Long noncoding RNA MALAT1 promotes high glucose-induced human endothelial cells pyroptosis by affecting NLRP3 expression through competitively binding miR-22. Biochemical and Biophysical Research Communications, 509, 359–366.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Y. H., Aldo, P., You, Y., Ding, J., Kaislasuo, J., Petersen, J. F., Lokkegaard, E., Peng, G., Paidas, M. J., Simpson, S., Pal, L., Guller, S., Liu, H., Liao, A. H., & Mor, G. (2020). Trophoblast-secreted soluble-PD-L1 modulates macrophage polarization and function. Journal of Leukocyte Biology, 108, 983–998.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all of members in our team for the excellent work.

Funding

This work was supported by Research Project of Maternal and Child Health in Jiangsu Province under Grant Number F201944.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DF, YJ, and CZ; data curation: DF and Yu Pan; methodology: DF, YJ, and SZ; validation: CZ and Yu Pan; writing—original draft: DF and YJ; writing—review and editing: CZ and SZ.

Corresponding author

Correspondence to Suhua Zhang.

Ethics declarations

Conflict of interest

The authors confirm they have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, D., Ju, Y., Zhu, C. et al. LncRNA NEAT1 Promotes TLR4 Expression to Regulate Lipopolysaccharide-Induced Trophoblastic Cell Pyroptosis as a Molecular Sponge of miR-302b-3p. Mol Biotechnol 64, 670–680 (2022). https://doi.org/10.1007/s12033-021-00436-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00436-2

Keywords

Navigation