Skip to main content

Advertisement

Log in

Structure and Function of Potential Glycosylation Sites of Dynactin-Associated Protein dynAP

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Overexpression of human dynactin-associated protein (dynAP) transforms NIH3T3 cells. DynAP is a single-pass transmembrane protein with a carboxy-terminal region (amino acids 135–210) exposed to the outside of the cell possessing one potential N-glycosylation site (position 143) and a distal C-terminal region (residues 173–210) harboring a Thr/Ser-rich (T/S) cluster that may be O-glycosylated. In SDS–PAGE, dynAP migrates anomalously at ~ 45 kDa, much larger than expected (22.5 kDa) based on the amino acid composition. Using dynAP mutants, we herein showed that the T/S cluster region is responsible for the anomalous migration. The T/S cluster region is required for transport to the cytoplasmic membrane and cell transformation. We produced and purified the extracellular fragment (dynAP135–210) in secreted form and analyzed the attached glycans. Asn143 displayed complex-type glycosylation, suggesting that oligosaccharide transferase may recognize the NXT/S sequon in the secretory form, but not clearly in full-length dynAP. Core I-type O-glycosylation (Gal-GalNAc) was observed, but the mass spectrometry signal was weak, clearly indicating that further studies are needed to elucidate modifications in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All relevant data can be found in the paper and its Supporting Information files. MS data are available in the GlycoPOST repository (http://glycopost.glycosmos.org/) as GlyToucan ID GPST000172, GPST000173, and GPST000174.

Abbreviations

3-AQ:

3-Aminoquinoline

DAPI:

4′,6-Diamidino-2-phenylindole

DMEM:

Dulbecco’s Modified Eagle Medium

dynAP:

Dynactin-associated protein

GFP:

Green fluorescent protein

MS:

Mass spectrometry

SDS–PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

TM:

Transmembrane

TFA:

Trifluoroacetic acid

TBS:

Tris-buffered saline

References

  1. Kops, G. J., Weaver, B. A., & Cleveland, D. W. (2005). On the road to cancer: Aneuploidy and the mitotic checkpoint. Nature Reviews Cancer, 5, 773–785.

    Article  CAS  Google Scholar 

  2. Pinsky, B. A., & Biggins, S. (2005). The spindle checkpoint: Tension versus attachment. Trends in Cell Biology, 15, 486–493.

    Article  CAS  Google Scholar 

  3. Kunoh, T., Noda, T., Koseki, K., Sekigawa, M., Takagi, M., Shin-ya, K., Goshima, N., Iemura, S., Natsume, T., Wada, S., Mukai, Y., Ohta, S., Sasaki, R., & Mizukami, T. (2010). A novel human dynactin-associated protein, dynAP, promotes activation of Akt, and ergosterol-related compounds induce dynAP-dependent apoptosis of human cancer cells. Molecular Cancer Therapeutics, 9, 2934–2942.

    Article  CAS  Google Scholar 

  4. Sternlicht, H., Farr, G. W., Sternlicht, M. L., Driscoll, J. K., Willison, K., & Yaffe, M. B. (1993). The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proceedings of the National academy of Sciences of the United States of America, 90, 9422–9426.

    Article  CAS  Google Scholar 

  5. Echbarthi, M., Vallin, J., & Grantham, J. (2018). Interactions between monomeric CCTdelta and p150(Glued): A novel function for CCTdelta at the cell periphery distinct from the protein folding activity of the molecular chaperone CCT. Experimental Cell Research, 370, 137–149.

    Article  CAS  Google Scholar 

  6. Fagerberg, L., Hallstrom, B. M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka, M., Tahmasebpoor, S., Danielsson, A., Edlund, K., Asplund, A., Sjostedt, E., Lundberg, E., Szigyarto, C. A., Skogs, M., Takanen, J. O., Berling, H., Tegel, H., Mulder, J., …, Uhlen, M. (2014). Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular and Cellular Proteomics, 13, 397–406.

  7. Yue, F., Cheng, Y., Breschi, A., Vierstra, J., Wu, W., Ryba, T., Sandstrom, R., Ma, Z., Davis, C., Pope, B. D., Shen, Y., Pervouchine, D. D., Djebali, S., Thurman, R. E., Kaul, R., Rynes, E., Kirilusha, A., Marinov, G. K., Williams, B. A., …, Ren, B. (2014). A comparative encyclopedia of DNA elements in the mouse genome. Nature, 515, 355–364.

  8. Kunoh, T., Wang, W., Kobayashi, H., Matsuzaki, D., Togo, Y., Tokuyama, M., Hosoi, M., Koseki, K., Wada, S., Nagai, N., Nakamura, T., Nomura, S., Hasegawa, M., Sasaki, R., & Mizukami, T. (2015). Human dynactin-associated protein transforms NIH3T3 cells to generate highly vascularized tumors with weak cell-cell interaction. PLoS ONE, 10, e0135836.

    Article  Google Scholar 

  9. Rath, A., Glibowicka, M., Nadeau, V. G., Chen, G., & Deber, C. M. (2009). Detergent binding explains anomalous SDS–PAGE migration of membrane proteins. Proceedings of the National academy of Sciences of the United States of America, 106, 1760–1765.

    Article  CAS  Google Scholar 

  10. Rath, A., Cunningham, F., & Deber, C. M. (2013). Acrylamide concentration determines the direction and magnitude of helical membrane protein gel shifts. Proceedings of the National academy of Sciences of the United States of America, 110, 15668–15673.

    Article  CAS  Google Scholar 

  11. Rath, A., & Deber, C. M. (2013). Correction factors for membrane protein molecular weight readouts on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analytical Biochemistry, 434, 67–72.

    Article  CAS  Google Scholar 

  12. Ikura, K., Yokota, H., Sasaki, R., & Chiba, H. (1989). Determination of amino- and carboxyl-terminal sequences of guinea pig liver transglutaminase: Evidence for amino-terminal processing. Biochemistry, 28, 2344–2348.

    Article  CAS  Google Scholar 

  13. Tatsukawa, H., Takeuchi, T., Shinoda, Y., & Hitomi, K. (2020). Identification and characterization of substrates crosslinked by transglutaminases in liver and kidney fibrosis. Analytical Biochemistry, 604, 113629.

    Article  CAS  Google Scholar 

  14. Han, Z. J., Feng, Y. H., Gu, B. H., Li, Y. M., & Chen, H. (2018). The post-translational modification, SUMOylation, and cancer (review). International Journal of Oncology, 52, 1081–1094.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mansour, M. A. (2018). Ubiquitination: Friend and foe in cancer. International Journal of Biochemistry & Cell Biology, 101, 80–93.

    Article  CAS  Google Scholar 

  16. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    Article  CAS  Google Scholar 

  17. Kaneshiro, K., Fukuyama, Y., Iwamoto, S., Sekiya, S., & Tanaka, K. (2011). Highly sensitive MALDI analyses of glycans by a new aminoquinoline-labeling method using 3-aminoquinoline/alpha-cyano-4-hydroxycinnamic acid liquid matrix. Analytical Chemistry, 83, 3663–3667.

    Article  CAS  Google Scholar 

  18. Rohmer, M., Meyer, B., Mank, M., Stahl, B., Bahr, U., & Karas, M. (2010). 3-Aminoquinoline acting as matrix and derivatizing agent for MALDI MS analysis of oligosaccharides. Analytical Chemistry, 82, 3719–3726.

    Article  CAS  Google Scholar 

  19. Marshall, R. D. (1972). Glycoproteins. Annual Review of Biochemistry, 41, 673–702.

    Article  CAS  Google Scholar 

  20. Spiro, R. G. (2002). Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology, 12, 43r–56r.

    Article  CAS  Google Scholar 

  21. Hang, H. C., & Bertozzi, C. R. (2005). The chemistry and biology of mucin-type O-linked glycosylation. Bioorganic & Medicinal Chemistry, 13, 5021–5034.

    Article  CAS  Google Scholar 

  22. Julenius, K., Molgaard, A., Gupta, R., & Brunak, S. (2005). Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology, 15, 153–164.

    Article  CAS  Google Scholar 

  23. Steentoft, C., Vakhrushev, S. Y., Joshi, H. J., Kong, Y., Vester-Christensen, M. B., Schjoldager, K. T., Lavrsen, K., Dabelsteen, S., Pedersen, N. B., Marcos-Silva, L., Gupta, R., Bennett, E. P., Mandel, U., Brunak, S., Wandall, H. H., Levery, S. B., & Clausen, H. (2013). Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. The EMBO Journal, 32, 1478–1488.

    Article  CAS  Google Scholar 

  24. Kohda, D. (2018). Structural basis of protein Asn-glycosylation by oligosaccharyltransferases. Advances in Experimental Medicine and Biology, 1104, 171–199.

    Article  CAS  Google Scholar 

  25. Ronnett, G. V., & Lane, M. D. (1981). Post-translational glycosylation-induced activation of aglycoinsulin receptor accumulated during tunicamycin treatment. Journal of Biological Chemistry, 256, 4704–4707.

    Article  CAS  Google Scholar 

  26. Kolhekar, A. S., Quon, A. S., Berard, C. A., Mains, R. E., & Eipper, B. A. (1998). Post-translational N-glycosylation of a truncated form of a peptide processing enzyme. Journal of Biological Chemistry, 273, 23012–23018.

    Article  CAS  Google Scholar 

  27. Duvet, S., Op De Beeck, A., Cocquerel, L., Wychowski, C., Cacan, R., & Dubuisson, J. (2002). Glycosylation of the hepatitis C virus envelope protein E1 occurs posttranslationally in a mannosylphosphoryldolichol-deficient CHO mutant cell line. Glycobiology, 12, 95–101.

    Article  CAS  Google Scholar 

  28. Bolt, G., Kristensen, C., & Steenstrup, T. D. (2005). Posttranslational N-glycosylation takes place during the normal processing of human coagulation factor VII. Glycobiology, 15, 541–547.

    Article  CAS  Google Scholar 

  29. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144, 646–674.

    Article  CAS  Google Scholar 

  30. Xu, C., & Ng, D. T. (2015). Glycosylation-directed quality control of protein folding. Nature Reviews Molecular Cell Biology, 16, 742–752.

    Article  CAS  Google Scholar 

  31. Vasudevan, D., Takeuchi, H., Johar, S. S., Majerus, E., & Haltiwanger, R. S. (2015). Peters plus syndrome mutations disrupt a noncanonical ER quality-control mechanism. Current Biology, 25, 286–295.

    Article  CAS  Google Scholar 

  32. Sun, X., Zhan, M., Sun, X., Liu, W., & Meng, X. (2021). C1GALT1 in health and disease (review). Oncology Letters, 22, 589.

    Article  CAS  Google Scholar 

  33. Lin, M. C., Chien, P. H., Wu, H. Y., Chen, S. T., Juan, H. F., Lou, P. J., & Huang, M. C. (2018). C1GALT1 predicts poor prognosis and is a potential therapeutic target in head and neck cancer. Oncogene, 37, 5780–5793.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI Grant Number 24300343 and Daiichi Sankyo Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Hasegawa.

Ethics declarations

Research Involving Human and/or Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2720 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Konishi, T., Horikawa, K. et al. Structure and Function of Potential Glycosylation Sites of Dynactin-Associated Protein dynAP. Mol Biotechnol 64, 611–620 (2022). https://doi.org/10.1007/s12033-021-00435-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00435-3

Keywords

Navigation