Abstract
The immune system plays an essential role in the angiogenesis, repair, and regeneration of damaged tissues. Therefore, the design of scaffolds that manipulate immune cells and factors in such a way that could accelerate the repair of damaged tissues, following implantation, is one of the main goals of regenerative medicine. However, before manipulating the immune system, the function of the various components of the immune system during the repair process should be well understood and the fabrication conditions of the manipulated scaffolds should be brought closer to the physiological state of the body. In this article, we first review the studies aimed at the role of distinct immune cell populations in angiogenesis and support of damaged tissue repair. In the second part, we discuss the use of strategies that promote tissue regeneration by modulating the immune system. Given that various studies have shown an increase in tissue repair rate with the addition of stem cells and growth factors to the scaffolds, and regarding the limited resources of stem cells, we suggest the design of scaffolds that are capable to develop repair of damaged tissue by manipulating the immune system and create an alternative for repair strategies that use stem cells or growth factors.
Similar content being viewed by others
References
Ellis, S., Lin, E. J., & Tartar, D. (2018). Immunology of wound healing. Current Dermatology Reports, 7, 350–358.
Peng, Y., Martin, D. A., Kenkel, J., Zhang, K., Ogden, C. A., & Elkon, K. B. (2007). Innate and adaptive immune response to apoptotic cells. Journal of Autoimmunity, 29, 303–309.
Otis, J. S., Niccoli, S., Hawdon, N., Sarvas, J. L., Frye, M. A., Chicco, A. J., & Lees, S. J. (2014). Pro-inflammatory mediation of myoblast proliferation. PLoS ONE, 9, e92363.
Frantz, S., Vincent, K. A., Feron, O., & Kelly, R. A. (2005). Innate immunity and angiogenesis. Circulation Research, 96, 15–26.
Takeuchi, O., & Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140, 805–820.
Kawai, T., & Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nature Immunology, 11, 373.
Li, T., et al. (2018). 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone. Acta biomaterialia, 71, 96–107.
Kolaczkowska, E., & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology, 13, 159–175.
Sadtler, K., et al. (2016). Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science, 352, 366–370.
Swinehart, I. T., & Badylak, S. F. (2016). Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis. Developmental Dynamics, 245, 351–360. https://doi.org/10.1002/dvdy.24379
Londono, R., & Badylak, S. F. (2015). Biologic scaffolds for regenerative medicine: Mechanisms of in vivo remodeling. Annals of Biomedical Engineering, 43, 577–592.
Ben-Shaul, S., Landau, S., Merdler, U., & Levenberg, S. (2019). Mature vessel networks in engineered tissue promote graft–host anastomosis and prevent graft thrombosis. Proceedings of the National Academy of Sciences USA, 116, 2955–2960.
Chen, R. R., Silva, E. A., Yuen, W. W., & Mooney, D. J. (2007). Spatio–temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharmaceutical Research, 24, 258–264.
Freeman, I., & Cohen, S. (2009). The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials, 30, 2122–2131.
Spiller, K. L., et al. (2015). Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials, 37, 194–207.
Perry, L., Flugelman, M. Y., & Levenberg, S. (2017). Elderly patient-derived endothelial cells for vascularization of engineered muscle. Molecular Therapy, 25, 935–948.
Christoffersson, G., et al. (2012). VEGF-A recruits a proangiogenic MMP-9–delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue Blood. The Journal of the American Society of Hematology, 120, 4653–4662.
Vinish, M., Cui, W., Stafford, E., Bae, L., Hawkins, H., Cox, R., & Toliver-Kinsky, T. (2016). Dendritic cells modulate burn wound healing by enhancing early proliferation. Wound Repair and Regeneration, 24, 6–13.
Gregorio, J., et al. (2010). Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. Journal of Experimental Medicine, 207, 2921–2930.
Wilgus, T. A., Roy, S., & McDaniel, J. C. (2013). Neutrophils and wound repair: Positive actions and negative reactions. Advances in Wound Care, 2, 379–388.
Zemans, R. L., et al. (2011). Neutrophil transmigration triggers repair of the lung epithelium via β-catenin signaling. Proceedings of the National Academy of Sciences USA, 108, 15990–15995.
Elliott, M. R., Koster, K. M., & Murphy, P. S. (2017). Efferocytosis signaling in the regulation of macrophage inflammatory responses. The Journal of Immunology, 198, 1387–1394.
Brancato, S. K., & Albina, J. E. (2011). Wound macrophages as key regulators of repair: Origin, phenotype, and function. The American Journal of Pathology, 178, 19–25.
Sindrilaru, A., et al. (2011). An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. The Journal of Clinical Investigation, 121, 985–997.
Foroughi, K., Khaksari, M., Rahmati, M., Bitaraf, F. S., & Shayannia, A. (2019). Apelin-13 protects PC12 cells against methamphetamine-induced oxidative stress, autophagy and apoptosis. Neurochemical Research, 44, 2103–2112. https://doi.org/10.1007/s11064-019-02847-9
Noori-Daloii, M.-R., et al. (2012). Use of siRNA in knocking down of dopamine receptors, a possible therapeutic option in neuropsychiatric disorders Molecular. Biology Reports, 39, 2003–2010. https://doi.org/10.1007/s11033-011-0947-3
Jetten, N., et al. (2014). Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses. PLoS ONE, 9, e102994.
Lauer, A., et al. (2020). Biofabrication of SDF-1 functionalized 3D-printed cell-free scaffolds for bone tissue regeneration. International Journal of Molecular Sciences, 21, 2175.
Anzai, A., et al. (2012). Regulatory role of dendritic cells in postinfarction healing and left ventricular remodeling. Circulation, 125, 1234–1245.
Julier, Z., Park, A. J., Briquez, P. S., & Martino, M. M. (2017). Promoting tissue regeneration by modulating the immune system. Acta Biomaterialia, 53, 13–28.
Liu, G., Ma, H., Qiu, L., Li, L., Cao, Y., Ma, J., & Zhao, Y. (2011). Phenotypic and functional switch of macrophages induced by regulatory CD4+ CD25+ T cells in mice. Immunology and Cell Biology, 89, 130–142.
Lei, H., Schmidt-Bleek, K., Dienelt, A., Reinke, P., & Volk, H.-D. (2015). Regulatory T cell-mediated anti-inflammatory effects promote successful tissue repair in both indirect and direct manners. Frontiers in Pharmacology, 6, 184.
Nosbaum, A., et al. (2016). Cutting edge: Regulatory T cells facilitate cutaneous wound healing. The Journal of Immunology, 196, 2010–2014.
Aggarwal, N. R., et al. (2010). Regulatory T cell-mediated resolution of lung injury: Identification of potential target genes via expression profiling. Physiological Genomics, 41, 109–119.
Garibaldi, B. T., et al. (2013). Regulatory T cells reduce acute lung injury fibroproliferation by decreasing fibrocyte recruitment American. Journal of Respiratory Cell and Molecular Biology, 48, 35–43. https://doi.org/10.1165/rcmb.2012-0198OC
Trujillo, G., Hartigan, A. J., & Hogaboam, C. M. (2010). T regulatory cells and attenuated bleomycin-induced fibrosis in lungs of CCR7-/-mice. Fibrogenesis & Tissue Repair, 3, 18.
Gandolfo, M. T., et al. (2010). Mycophenolate mofetil modifies kidney tubular injury and Foxp3+ regulatory T cell trafficking during recovery from experimental ischemia–reperfusion. Transplant Immunology, 23, 45–52.
Lai, L.-W., Yong, K.-C., & Lien, Y.-H.H. (2012). Pharmacologic recruitment of regulatory T cells as a therapy for ischemic acute kidney injury. Kidney International, 81, 983–992.
Rigamonti, E., Zordan, P., Sciorati, C., Rovere-Querini, P., & Brunelli, S. (2014). Macrophage plasticity in skeletal muscle repair. BioMed Research International, 2014, 1–9.
Meng, X., et al. (2016). Regulatory T cells in cardiovascular diseases. Nature Reviews Cardiology, 13, 167–179.
Ramirez, K., Witherden, D. A., & Havran, W. L. (2015). All hands on DE (T) C: Epithelial-resident γδ T cells respond to tissue injury. Cellular Immunology, 296, 57–61.
Ono, T., Okamoto, K., Nakashima, T., Nitta, T., Hori, S., Iwakura, Y., & Takayanagi, H. (2016). IL-17-producing γδ T cells enhance bone regeneration. Nature Communications, 7, 1–9.
Kumar, P., Rajasekaran, K., Palmer, J. M., Thakar, M. S., & Malarkannan, S. (2013). IL-22: An evolutionary missing-link authenticating the role of the immune system in tissue regeneration. Journal of Cancer, 4, 57.
Liu, Y., et al. (2011). Mesenchymal stem cell–based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nature Medicine, 17, 1594.
Reinke, S., et al. (2013). Terminally differentiated CD8+ T cells negatively affect bone regeneration in humans. Science Translational Medicine, 5, 177.
Tang, Y., Zhang, M. J., Hellmann, J., Kosuri, M., Bhatnagar, A., & Spite, M. (2013). Proresolution therapy for the treatment of delayed healing of diabetic wounds. Diabetes, 62, 618–627.
Vasconcelos, D. P., Costa, M., Amaral, I. F., Barbosa, M. A., Águas, A. P., & Barbosa, J. N. (2015). Development of an immunomodulatory biomaterial: Using resolvin D1 to modulate inflammation. Biomaterials, 53, 566–573.
Vasconcelos, D. P., et al. (2018). Chitosan porous 3D scaffolds embedded with resolvin D1 to improve in vivo bone healing. Journal of Biomedical Materials Research Part A, 106, 1626–1633.
Shi, J., et al. (2019). Regulation of the inflammatory response by vascular grafts modified with aspirin-triggered resolvin D1 promotes blood vessel regeneration. Acta Biomaterialia, 97, 360–373.
Chen, W. C. W., et al. (2015). Controlled dual delivery of fibroblast growth factor-2 and Interleukin-10 by heparin-based coacervate synergistically enhances ischemic heart repair. Biomaterials, 72, 138–151. https://doi.org/10.1016/j.biomaterials.2015.08.050
King, A., Balaji, S., Le, L. D., Crombleholme, T. M., & Keswani, S. G. (2014). Regenerative wound healing: The role of interleukin-10. Advances in Wound Care, 3, 315–323.
Celik, M. Ö., Labuz, D., Keye, J., Glauben, R., & Machelska, H. (2020). IL-4 induces M2 macrophages to produce sustained analgesia via opioids. JCI Insight, 5, e133093. https://doi.org/10.1172/jci.insight.133093
Noori-daloii, M. R., et al. (2015). Knocking down the DRD2 by shRNA expressing plasmids in the nucleus accumbens prevented the disrupting effect of apomorphine on prepulse inhibition in rat. Journal of Sciences, Islamic Republic of Iran, 26, 205–212.
Shukla, G. S., & Chandra, S. (1987). Concurrent exposure to lead, manganese, and cadmium and their distribution to various brain regions, liver, kidney, and testis of growing rats. Archives of Environmental Contamination and Toxicology, 16, 303–310.
Spiller, K. L., Anfang, R. R., Spiller, K. J., Ng, J., Nakazawa, K. R., Daulton, J. W., & Vunjak-Novakovic, G. (2014). The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials, 35, 4477–4488. https://doi.org/10.1016/j.biomaterials.2014.02.012
Kuipers, S., Boin, A., Bossong, R., & Hegemann, H. (2015). Building joint crisis management capacity? Comparing civil security systems in 22 European countries. Risk, Hazards & Crisis in Public Policy, 6, 1–21.
Penn, J. W., Grobbelaar, A. O., & Rolfe, K. J. (2012). The role of the TGF-β family in wound healing, burns and scarring: A review. International Journal of Burns and Trauma, 2, 18–28.
Gonçalves, J. F., et al. (2010). N-acetylcysteine prevents memory deficits, the decrease in acetylcholinesterase activity and oxidative stress in rats exposed to cadmium. Chemico-Biological Interactions, 186, 53–60.
Snutch, T. P., Peloquin, J., Mathews, E., McRory, J. E. (2013). Molecular properties of voltage-gated calcium channels. In: Madame Curie Bioscience Database [Internet]. Landes Bioscience
Barnham, K. J., & Bush, A. I. (2008). Metals in Alzheimer’s and Parkinson’s diseases. Current Opinion in Chemical Biology, 12, 222–228.
Polson, A. K., Sokol, M. B., Dineley, K. E., & Malaiyandi, L. M. (2011). Matrix cadmium accumulation depolarizes mitochondria isolated from mouse brain. Impulse, 2011, 1–8.
El-Tarras, A.E.-S., Attia, H. F., Soliman, M. M., El Awady, M. A., & Amin, A. A. (2016). Neuroprotective effect of grape seed extract against cadmium toxicity in male albino rats. International Journal of Immunopathology and Pharmacology, 29, 398–407.
García, J. R., Quirós, M., Han, W. M., O’Leary, M. N., Cox, G. N., Nusrat, A., & García, A. J. (2019). IFN-γ-tethered hydrogels enhance mesenchymal stem cell-based immunomodulation and promote tissue repair. Biomaterials, 220, 119403. https://doi.org/10.1016/j.biomaterials.2019.119403
Bujak, M., Dobaczewski, M., Chatila, K., Mendoza, L. H., Li, N., Reddy, A., & Frangogiannis, N. G. (2008). Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. The American Journal of Pathology, 173, 57–67.
Suzuki, K., Murtuza, B., Smolenski, R. T., Sammut, I. A., Suzuki, N., Kaneda, Y., & Yacoub, M. H. (2001). Overexpression of interleukin-1 receptor antagonist provides cardioprotection against ischemia-reperfusion injury associated with reduction in apoptosis. Circulation, 104, 308–313.
Turner, N. A., Warburton, P., O’Regan, D. J., Ball, S. G., & Porter, K. E. (2010). Modulatory effect of interleukin-1α on expression of structural matrix proteins, MMPs and TIMPs in human cardiac myofibroblasts: Role of p38 MAP kinase. Matrix Biology, 29, 613–620.
Frangogiannis, N. G. (2015). Interleukin-1 in cardiac injury, repair, and remodeling: pathophysiologic and translational concepts. Discoveries, 3, e41.
Hwang, M.-W., et al. (2001). Neutralization of interleukin-1β in the acute phase of myocardial infarction promotes the progression of left ventricular remodeling. Journal of the American College of Cardiology, 38, 1546–1553.
Granados-Romero, J. J., et al. (2017). Colorectal cancer: A review. International Journal of Research in Medical Science, 5, 4667–4676.
Mountziaris, P. M., & Mikos, A. G. (2008). Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Engineering Part B: Reviews, 14, 179–186.
Bartosh, T. J., et al. (2010). Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proceedings of the National Academy of Sciences USA, 107, 13724–13729.
Ren, G., et al. (2008). Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2, 141–150.
Roddy, G. W., et al. (2011). Action at a distance: Systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-α stimulated gene/protein 6. Stem Cells, 29, 1572–1579.
Aktas, E., et al. (2017). Immune modulation with primed mesenchymal stem cells delivered via biodegradable scaffold to repair an Achilles tendon segmental defect. Journal of Orthopaedic Research, 35, 269–280.
de Oliveira Carvalho, P. E., Magolbo, N. G., De Aquino, R. F., & Weller, C. D. (2016). Oral aspirin for treating venous leg ulcers. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD009432.pub2
Cantón, I., Mckean, R., Charnley, M., Blackwood, K. A., Fiorica, C., Ryan, A. J., & MacNeil, S. (2010). Development of an Ibuprofen-releasing biodegradable PLA/PGA electrospun scaffold for tissue regeneration. Biotechnology and Bioengineering, 105, 396–408.
Varatharajan, L., Thapar, A., Lane, T., Munster, A. B., & Davies, A. H. (2016). Pharmacological adjuncts for chronic venous ulcer healing: A systematic review. Phlebology, 31, 356–365. https://doi.org/10.1177/0268355515587194
Friedrich, E. E., Sun, L. T., Natesan, S., Zamora, D. O., Christy, R. J., & Washburn, N. R. (2014). Effects of hyaluronic acid conjugation on anti-TNF-α inhibition of inflammation in burns. Journal of Biomedical Materials Research Part A, 102, 1527–1536. https://doi.org/10.1002/jbm.a.34829
Asea, A., et al. (2002). Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4. The Journal of Biological Chemistry, 277, 15028–15034. https://doi.org/10.1074/jbc.M200497200
Kovalchin, P., Joseph, T., Wang, M., PhD, R., Wagh, M., Mihir, S., Azoulay, B., Jason, S. M., & Melinda, C. R. Y. (2006). In vivo delivery of heat shock protein 70 accelerates wound healing by up-regulating macrophage-mediated phagocytosis. Wound Repair and Regeneration, 14, 129–137. https://doi.org/10.1111/j.1743-6109.2006.00102.x
Yamamoto, M., Sato, T., Beren, J., Verthelyi, D., & Klinman, D. M. (2011). The acceleration of wound healing in primates by the local administration of immunostimulatory CpG oligonucleotides. Biomaterials, 32, 4238–4242. https://doi.org/10.1016/j.biomaterials.2011.02.043
Chen, P., et al. (2015). Radially oriented collagen scaffold with SDF-1 promotes osteochondral repair by facilitating cell homing. Biomaterials, 39, 114–123. https://doi.org/10.1016/j.biomaterials.2014.10.049
Theiss, H. D., et al. (2011). Dual stem cell therapy after myocardial infarction acts specifically by enhanced homing via the SDF-1/CXCR4 axis. Stem Cell Research, 7, 244–255. https://doi.org/10.1016/j.scr.2011.05.003
Bajetto, A., et al. (2006). Expression of CXC chemokine receptors 1–5 and their ligands in human glioma tissues: Role of CXCR4 and SDF1 in glioma cell proliferation and migration. Neurochemistry International, 49, 423–432. https://doi.org/10.1016/j.neuint.2006.03.003
Kimura, Y., & Tabata, Y. (2010). Controlled release of stromal-cell-derived factor-1 from gelatin hydrogels enhances angiogenesis. Journal of Biomaterials Science, Polymer Edition, 21, 37–51. https://doi.org/10.1163/156856209X410193
Rabbany, S. Y., Pastore, J., Yamamoto, M., Miller, T., Rafii, S., Aras, R., & Penn, M. (2010). Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing. Cell Transplantation, 19, 399–408. https://doi.org/10.3727/096368909x481782
Zhang, G. E., Nakamura, Y., Wang, X., Hu, Q., Suggs, L. J., & Zhang, J. (2004). Controlled release of stromal cell-derived factor-1alpha in situ increases C-kit+ cell homing to the infarcted heart. Tissue Engineering, 13, 2063–2071. https://doi.org/10.1089/ten.2006.0013
Thevenot, P. T., Nair, A. M., Shen, J., Lotfi, P., Ko, C.-Y., & Tang, L. (2010). The effect of incorporation of SDF-1α into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials, 31, 3997–4008. https://doi.org/10.1016/j.biomaterials.2010.01.144
Shen, W., Chen, X., Chen, J., Yin, Z., Heng, B. C., Chen, W., & Ouyang, H.-W. (2010). The effect of incorporation of exogenous stromal cell-derived factor-1 alpha within a knitted silk-collagen sponge scaffold on tendon regeneration. Biomaterials, 31, 7239–7249. https://doi.org/10.1016/j.biomaterials.2010.05.040
Projahn, D., et al. (2014). Controlled intramyocardial release of engineered chemokines by biodegradable hydrogels as a treatment approach of myocardial infarction. Journal of Cellular and Molecular Medicine, 18, 790–800. https://doi.org/10.1111/jcmm.12225
Lau, T. T., & Wang, D.-A. (2011). Stromal cell-derived factor-1 (SDF-1): Homing factor for engineered regenerative medicine. Expert Opinion on Biological Therapy, 11, 189–197. https://doi.org/10.1517/14712598.2011.546338
Xu, M., Wei, X., Fang, J., & Xiao, L. (2019). Combination of SDF-1 and bFGF promotes bone marrow stem cell-mediated periodontal ligament regeneration. Bioscience Reports, 39, BSR20190785. https://doi.org/10.1042/BSR20190785
Armulik, A., Genové, G., & Betsholtz, C. (2011). Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Developmental Cell, 21, 193–215. https://doi.org/10.1016/j.devcel.2011.07.001
Noguchi, K., & Ishikawa, I. (2007). The roles of cyclooxygenase-2 and prostaglandin E2 in periodontal disease. Periodontology, 43, 85–101. https://doi.org/10.1111/j.1600-0757.2006.00170.x
Paralkar, V. M., et al. (2003). An EP2 receptor-selective prostaglandin E2 agonist induces bone healing. Proceedings of the National Academy of Sciences USA, 100, 6736–6740. https://doi.org/10.1073/pnas.1037343100
Namkoong, S., et al. (2005). Prostaglandin E2 stimulates angiogenesis by activating the nitric oxide/cGMP pathway in human umbilical vein endothelial cells. Experimental & Molecular Medicine, 37, 588–600. https://doi.org/10.1038/emm.2005.72
Kato, N., et al. (2007). Nanogel-based delivery system enhances PGE2 effects on bone formation. Journal of Cellular Biochemistry, 101, 1063–1070. https://doi.org/10.1002/jcb.21160
Toyoda, H., Terai, H., Sasaoka, R., Oda, K., & Takaoka, K. (2005). Augmentation of bone morphogenetic protein-induced bone mass by local delivery of a prostaglandin E EP4 receptor agonist. Bone, 37, 555–562. https://doi.org/10.1016/j.bone.2005.04.042
Leng, Q., Chen, L., & Lv, Y. (2020). RNA-based scaffolds for bone regeneration: Application and mechanisms of mRNA, miRNA and siRNA. Theranostics, 10, 3190–3205. https://doi.org/10.7150/thno.42640
Haber, B. A., Mohn, K. L., Diamond, R. H., & Taub, R. (1993). Induction patterns of 70 genes during nine days after hepatectomy define the temporal course of liver regeneration. The Journal of Clinical Investigation, 91, 1319–1326.
Li, W., Liang, X., Leu, J. I., Kovalovich, K., Ciliberto, G., & Taub, R. (2001). Global changes in interleukin-6–dependent gene expression patterns in mouse livers after partial hepatectomy. Hepatology, 33, 1377–1386. https://doi.org/10.1053/jhep.2001.24431
Cressman, D. E., Diamond, R. H., & Taub, R. (1995). Rapid activation of the Stat3 transcription complex in liver regeneration. Hepatology, 21, 1443–1449.
FitzGerald, M., Webber, E., Donovan, J., & Fausto, N. (1995). Rapid DNA binding by nuclear factor kappa B in hepatocytes at the start of liver regeneration. Cell Growth & Differentiation, 6, 417–427.
Taub, R. (2004). Liver regeneration: From myth to mechanism Nature reviews. Molecular Cell Biology, 5, 836–847.
Campbell, J. S., et al. (2001). Expression of suppressors of cytokine signaling during liver regeneration. The Journal of Clinical Investigation, 107, 1285–1292.
Wüstefeld, T., Rakemann, T., Kubicka, S., Manns, M. P., & Trautwein, C. (2000). Hyperstimulation with interleukin 6 inhibits cell cycle progression after hepatectomy in mice. Hepatology, 32, 514–522.
Manibur Rahman, T. (2000). Animal models of acute hepatic failure. International Journal of Experimental Pathology, 81, 145–157.
Chen, Z., Klein, T., Murray, R. Z., Crawford, R., Chang, J., Wu, C., & Xiao, Y. (2016). Osteoimmunomodulation for the development of advanced bone biomaterials. Materials Today, 19, 304–321.
Michalski, M. N., & McCauley, L. K. (2017). Macrophages and skeletal health. Pharmacology & Therapeutics, 174, 43–54.
Sinder, B. P., Pettit, A. R., & McCauley, L. K. (2015). Macrophages: Their emerging roles in bone. Journal of Bone and Mineral Research, 30, 2140–2149.
Heinemann, D., Lohmann, C., Siggelkow, H., Alves, F., Engel, I., & Köster, G. (2000). Human osteoblast-like cells phagocytose metal particles and express the macrophage marker CD68 in vitro. The Journal of Bone and Joint Surgery British, 82, 283–289.
Kikuchi, T., et al. (2001). Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via Toll-like receptors. The Journal of Immunology, 166, 3574–3579.
Reyes-Botella, C., Montes, M., Vallecillo-Capilla, M., Olivares, E., & Ruiz, C. (2000). Expression of molecules involved in antigen presentation and T cell activation (HLA-DR, CD80, CD86, CD44 and CD54) by cultured human osteoblasts. Journal of Periodontology, 71, 614–617.
Tobin, S. W., Alibhai, F. J., Weisel, R. D., & Li, R.-K. (2020). Considering cause and effect of immune cell aging on cardiac repair after myocardial infarction. Cells, 9, 1894.
Zouggari, Y., et al. (2013). B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nature Medicine, 19, 1273–1280.
Nahrendorf, M., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. The Journal of Experimental Medicine, 204, 3037–3047.
Nahrendorf, M., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. Journal of Experimental Medicine, 204, 3037–3047. https://doi.org/10.1084/jem.20070885
Felger, J. C., et al. (2010). Brain dendritic cells in ischemic stroke: Time course, activation state, and origin. Brain, Behavior, and Immunity, 24, 724–737.
Iadecola, C., & Anrather, J. (2011). The immunology of stroke: From mechanisms to translation. Nature Medicine, 17, 796–808.
Miron, V. E., et al. (2013). M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nature Neuroscience, 16, 1211–1218. https://doi.org/10.1038/nn.3469
Sas, A. R., et al. (2020). A new neutrophil subset promotes CNS neuron survival and axon regeneration. Nature immunology, 21, 1496–1505.
Acknowledgements
This study was part of the Ph.D. dissertation supported by the Tehran University of Medical Sciences (Grant No: 98-01-30-41244). The authors would like to acknowledge the Iran National Science Foundation (INSF, Grant No: 98001385) and also, Council for Development of Stem cell Sciences and Technologies (Grant No: 11/35723).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no financial conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Masoomikarimi, M., Salehi, M. Modulation of the Immune System Promotes Tissue Regeneration. Mol Biotechnol 64, 599–610 (2022). https://doi.org/10.1007/s12033-021-00430-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12033-021-00430-8