Skip to main content

Advertisement

Log in

Construction of a Porcine Skeletal Muscle-Specific Promoter by Inducing the Seed Region of miR-208a

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Transgenic promoter systems are of great interest for their potential use in gene therapy or production due to their high activity, long term, and cell specificity. Here, in order to obtain promoters with high activity and expressed specifically in skeletal muscle, the MYOD1, MYF5, and MCK were selected as the candidate genes. The truncated promoters were amplified and their activity was verified through dual-luciferase reporter gene test. We used genetic engineering techniques to improve promoter activity by tandemly linking enhancers and promoters or two promoters. Furthermore, synthetic promoter was the most active when two eMCK enhancers and pMCK promoter were cascaded. To improve the tissue specificity of the promoter, the seed region of translational repressor miR-208a was inserted into the downstream of the promoter (pGL3-2eMCK-pMCK-T208-mCherry-EGFP). The results showed that the expression level of target genes decreased significantly (P < 0.05) in myocardium rather than in skeletal muscle. The results of in vivo transfection indicated that tandem transcriptional regulatory elements can increase promoter activity in mice. This work laid the foundation for future research on genetically modified pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang, D., Zhang, Z., Unver, T., & Zhang, B. (2021). CRISPR/Cas: A powerful tool for gene function study and crop improvement. Journal of Advanced Research, 29, 207–221.

    Article  CAS  Google Scholar 

  2. Sledzinski, P., Dabrowska, M., Nowaczyk, M., & Olejniczak, M. (2021). Paving the way towards precise and safe CRISPR genome editing. Biotechnology Advances, 49, 107737.

    Article  CAS  Google Scholar 

  3. Sah, S. K., Kaur, G., & Wani, S. H. (2016). Metabolic engineering of compatible solute trehalose for abiotic stress tolerance in plants. Osmolytes and plants acclimation to changing environment: Emerging omics technologies, (pp. 83-96).

  4. Wall, R. J., Powell, A. M., Paape, M. J., Kerr, D. E., Bannerman, D. D., Pursel, V. G., Wells, K. D., Talbot, N., & Hawk, H. W. (2005). Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nature Biotechnology, 23, 445–451.

    Article  CAS  Google Scholar 

  5. Zhou, Y., Lin, Y., Wu, X., Feng, C., Long, C., Xiong, F., Wang, N., Pan, D., & Chen, H. (2014). The high-level accumulation of n-3 polyunsaturated fatty acids in transgenic pigs harboring the n-3 fatty acid desaturase gene from Caenorhabditis briggsae. Transgenic Research, 23, 89–97.

    Article  CAS  Google Scholar 

  6. Maeng, G., Das, S., Greising, S. M., Gong, W., Singh, B. N., Kren, S., Mickelson, D., Skie, E., Gafni, O., Sorensen, J. R., et al. (2021). Humanized skeletal muscle in MYF5/MYOD/MYF6-null pig embryos. Nature Biomedical Engineering, 19, 1–10.

    Google Scholar 

  7. Anguita-Ruiz, A., Bustos-Aibar, M., Plaza-Díaz, J., Mendez-Gutierrez, A., Alcalá-Fdez, J., Aguilera, C. M., & Ruiz-Ojeda, F. J. (2021). Omics approaches in adipose tissue and skeletal muscle addressing the role of extracellular matrix in obesity and metabolic dysfunction. International journal of molecular sciences, 22(5), 2756.

    Article  CAS  Google Scholar 

  8. Che, J., Xu, C., Wu, Y., Jia, P., Han, Q., Ma, Y., Wang, X., Du, Y., & Zheng, Y. (2021). Early-senescent bone marrow mesenchymal stem cells promote C2C12 cell myogenic differentiation by preventing the nuclear translocation of FOXO3. Life Science, 277, 119520.

    Article  CAS  Google Scholar 

  9. Liu, X., Zeng, S., Liu, S., Wang, G., Lai, H., Zhao, X., Bi, S., Guo, D., Chen, X., Yi, H., et al. (2020). Identifying the related genes of muscle growth and exploring the functions by compensatory growth in mandarin fish (Siniperca chuatsi). Frontiers in Physiology, 11, 553563.

    Article  Google Scholar 

  10. Johnson, J. E., Wold, B. J., & Hauschka, S. D. (1989). Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Molecular and Cellular Biology, 9, 3393–3399.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Donoviel, D. B., Shield, M. A., Buskin, J. N., Haugen, H. S., Clegg, C. H., & Hauschka, S. D. (1996). Analysis of muscle creatine kinase gene regulatory elements in skeletal and cardiac muscles of transgenic mice. Molecular and Cellular Biology, 16, 1649–1658.

    Article  CAS  Google Scholar 

  12. Zavaljevski, M., Himeda, C., Tai, P., Nishiuchi, E., Gregorevic, P., Allen, J., Finn, E., Nguyen, Q., Blankinship, M., Meuse, L., et al. (2007). Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Molecular Therapy, 15, 320–329.

    Article  Google Scholar 

  13. Baskerville, S., & Bartel, D. P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA, 11, 241–247.

    Article  CAS  Google Scholar 

  14. Barad, O., Meiri, E., Avniel, A., Aharonov, R., Barzilai, A., Bentwich, I., Einav, U., Gilad, S., Hurban, P., Karov, Y., et al. (2004). MicroRNA expression detected by oligonucleotide microarrays: System establishment and expression profiling in human tissues. Genome Research, 14, 2486–2494.

    Article  CAS  Google Scholar 

  15. Montgomery, R. L., Hullinger, T. G., Semus, H. M., Dickinson, B. A., Seto, A. G., Lynch, J. M., Stack, C., Latimer, P. A., Olson, E. N., & van Rooij, E. (2011). Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation, 124, 1537–1547.

    Article  CAS  Google Scholar 

  16. van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J., & Olson, E. N. (2007). Control of stress-dependent cardiac growth and gene expression by a MicroRNA. Science, 316, 575.

    Article  Google Scholar 

  17. Lagos-Quintana, M. (2003). New microRNAs from mouse and human. RNA, 9, 175–179.

    Article  CAS  Google Scholar 

  18. Callis, T. E., Pandya, K., Seok, H. Y., Tang, R.-H., Tatsuguchi, M., Huang, Z.-P., Chen, J.-F., Deng, Z., Gunn, B., Shumate, J., et al. (2009). MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. The Journal of Clinical Investigation, 119, 2772–2786.

    Article  CAS  Google Scholar 

  19. van Rooij, E., Quiat, D., Johnson, B. A., Sutherland, L. B., Qi, X., Richardson, J. A., Kelm, R. J., & Olson, E. N. (2009). A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Developmental Cell, 17, 662–673.

    Article  Google Scholar 

  20. Pan, Y., Geng, R., Zhou, N., Zheng, G. F., Zhao, H., Wang, J., Zhao, C. M., Qiu, X. B., Yang, Y. Q., & Liu, X. Y. (2015). TBX20 loss-of-function mutation contributes to double outlet right ventricle. International Journal of Molecular Medicine, 35, 1058–1066.

    Article  CAS  Google Scholar 

  21. Maak, S., Neumann, K., & Swalve, H. H. (2006). Identification and analysis of putative regulatory sequences for the MYF5/MYF6 locus in different vertebrate species. Gene, 379, 141–147.

    Article  CAS  Google Scholar 

  22. Öztürk, S., Ergün, B. G., & Çalık, P. (2017). Double promoter expression systems for recombinant protein production by industrial microorganisms. Applied Microbiology and Biotechnology, 101, 7459–7475.

    Article  Google Scholar 

  23. Salva, M. Z., Himeda, C. L., Tai, P. W. L., Nishiuchi, E., Gregorevic, P., Allen, J. M., Finn, E. E., Nguyen, Q. G., Blankinship, M. J., Meuse, L., et al. (2007). Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Molecular Therapy, 15, 320–329.

    Article  CAS  Google Scholar 

  24. Gurr, S. J., & Rushton, P. J. (2005). Engineering plants with increased disease resistance: How are we going to express it? Trends in Biotechnology, 23, 283–290.

    Article  CAS  Google Scholar 

  25. Sahoo, D. K., Sarkar, S., Raha, S., Maiti, I. B., & Dey, N. (2014). Comparative analysis of synthetic DNA promoters for high-level gene expression in plants. Planta, 240, 855–875.

    Article  CAS  Google Scholar 

  26. Wu, C. Y., Suzuki, A., Washida, H., & Takaiwa, F. (1998). The GCN4 motif in a rice glutelin gene is essential for endosperm-specific gene expression and is activated by Opaque-2 in transgenic rice plants. The Plant Journal, 14, 673–683.

    Article  CAS  Google Scholar 

  27. Sawant, S. V., Kiran, K., Mehrotra, R., Chaturvedi, C. P., Ansari, S. A., Singh, P., Lodhi, N., & Tuli, R. (2005). A variety of synergistic and antagonistic interactions mediated by cis-acting DNA motifs regulate gene expression in plant cells and modulate stability of the transcription complex formed on a basal promoter. Journal of Experimental Botany, 56, 2345–2353.

    Article  CAS  Google Scholar 

  28. Rushton, P. J., Reinstädler, A., Lipka, V., Lippok, B., & Somssich, I. E. (2002). Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. The Plant Cell, 14, 749.

    Article  CAS  Google Scholar 

  29. Venter, M. (2007). Synthetic promoters: Genetic control through cis engineering. Trends in Plant Science, 12, 118–124.

    Article  CAS  Google Scholar 

  30. Blackwood, E. M. (1998). Going the distance: A current view of enhancer action. Science, 281, 60–63.

    Article  CAS  Google Scholar 

  31. Liu, Z., Zheng, W., Ge, C., Cui, W., Zhou, L., & Zhou, Z. (2019). High-level extracellular production of recombinant nattokinase in Bacillus subtilis WB800 by multiple tandem promoters. BMC Microbiology, 19, 89.

    Article  Google Scholar 

  32. Blazeck, J., Garg, R., Reed, B., & Alper, H. S. (2012). Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters. Biotechnology and Bioengineering, 109, 2884–2895.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dequan Xu for the expression plasmids.

Funding

This work was supported by the National Major Project of Transgenic Pig [Grant No. 2016ZX08006002].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by [XZ] and [ZR]. The first draft of the manuscript was written by [PZ] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhuqing Ren.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

[HZAUMU2013-0005].

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, X., Zhao, P. & Ren, Z. Construction of a Porcine Skeletal Muscle-Specific Promoter by Inducing the Seed Region of miR-208a. Mol Biotechnol 64, 473–481 (2022). https://doi.org/10.1007/s12033-021-00428-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00428-2

Keywords

Navigation