Skip to main content
Log in

Overview of the Cellular Stress Responses Involved in Fatty Acid Overproduction in E. coli

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Research on microbial fatty acid metabolism started in the late 1960s, and till date, various developments have aided in elucidating the fatty acid metabolism in great depth. Over the years, synthesis of microbial fatty acid has drawn industrial attention due to its diverse applications. However, fatty acid overproduction imparts various stresses on its metabolic pathways causing a bottleneck to further increase the fatty acid yields. Numerous strategies to increase fatty acid titres in Escherichia coli by pathway modulation have already been published, but the stress generated during fatty acid overproduction is relatively less studied. Stresses like pH, osmolarity and oxidative stress, not only lower fatty acid titres, but also alter the cell membrane composition, protein expression and membrane fluidity. This review discusses an overview of fatty acid synthesis pathway and presents a panoramic view of various stresses caused due to fatty acid overproduction in E. coli. It also addresses how certain stresses like high temperature and nitrogen limitation can boost fatty acid production. This review paper also highlights the interconnections that exist between these stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Janßen, H. J., & Steinbüchel, A. (2014). Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnology for Biofuels, 7(7), 1–26.

    Google Scholar 

  2. Yao, J., & Rock, C. O. (2017). Bacterial fatty acid metabolism in modern antibiotic discovery. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1862(11), 1300–1309. https://doi.org/10.1016/j.bbalip.2016.09.014

    Article  CAS  PubMed  Google Scholar 

  3. Schönfeld, P., & Wojtczak, L. (2016). Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. Journal of Lipid Research, 57(6), 943–954. https://doi.org/10.1194/jlr.R067629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Campbell, J. W., Morgan-Kiss, R. M., & Cronan, J. E. (2003). A new Escherichia coli metabolic competency: Growth on fatty acids by a novel anaerobic b-oxidation pathway. Molecular Microbiology, 47(3), 793–805. https://doi.org/10.1046/j.1365-2958.2003.03341.x

    Article  CAS  PubMed  Google Scholar 

  5. Gupta, P. L., Rajput, M., Oza, T., Trivedi, U., & Sanghvi, G. (2019). Eminence of microbial products in cosmetic industry. Natural Products and Bioprospecting, 9(4), 267–278. https://doi.org/10.1007/s13659-019-0215-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rahman, Z., Rashid, N., Nawab, J., Ilyas, M., Sung, B. H., & Kim, S. C. (2016). Escherichia coli as a fatty acid and biodiesel factory: Current challenges and future directions. Environmental Science and Pollution Research, 23(12), 12007–12018. https://doi.org/10.1007/s11356-016-6367-0

    Article  CAS  PubMed  Google Scholar 

  7. Shinmen, Y., Shimizu, S., Akimoto, K., Kawashima, H., & Yamada, H. (1989). Production of arachidonic acid by Mortierella fungi: Selection of a potent producer and optimization of culture conditions for large-scale production. Applied Microbiology and Biotechnology, 31(1), 11–16. https://doi.org/10.1007/BF00252518

    Article  CAS  Google Scholar 

  8. Baumann, I., & Westermann, P. (2016). Microbial production of short chain fatty acids from lignocellulosic biomass: Current processes and market. BioMed Research International. https://doi.org/10.1155/2016/8469357

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kassab, E., Fuchs, M., Haack, M., Mehlmer, N., & Brueck, T. B. (2019). Engineering Escherichia coli FAB system using synthetic plant genes for the production of long chain fatty acids. Microbial Cell Factories, 18(1), 1–10. https://doi.org/10.1186/s12934-019-1217-7

    Article  CAS  Google Scholar 

  10. Bae, J. H., Park, B. G., Jung, E., Lee, P. G., & Kim, B. G. (2014). fadD deletion and fadL overexpression in Escherichia coli increase hydroxy long-chain fatty acid productivity. Applied Microbiology and Biotechnology, 98(21), 8917–8925. https://doi.org/10.1007/s00253-014-5974-2

    Article  CAS  PubMed  Google Scholar 

  11. Tan, Z., Black, W., Yoon, J. M., Shanks, J. V., & Jarboe, L. R. (2017). Improving Escherichia coli membrane integrity and fatty acid production by expression tuning of FadL and OmpF. Microbial Cell Factories, 16(1), 1–15. https://doi.org/10.1186/s12934-017-0650-8

    Article  CAS  Google Scholar 

  12. Mi, L., Qin, D., Cheng, J., Wang, D., Li, S., & Wei, X. (2017). Efficient production of free fatty acids from ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate. Journal of Industrial Microbiology and Biotechnology, 44(3), 419–430. https://doi.org/10.1007/s10295-016-1888-6

    Article  CAS  PubMed  Google Scholar 

  13. Satoh, S., Ozaki, M., Matsumoto, S., Nabatame, T., Kaku, M., Shudo, T., et al. (2020). Enhancement of fatty acid biosynthesis by exogenous acetyl-CoA carboxylase and pantothenate kinase in Escherichia coli. Biotechnology Letters, 42(12), 2595–2605. https://doi.org/10.1007/s10529-020-02996-w

    Article  CAS  PubMed  Google Scholar 

  14. Fang, L., Fan, J., Wang, C., Cao, Y., & Song, H. (2020). Genome-wide targets identification by CRISPRi-Omics for high-titer production of free fatty acids in Escherichia coli. Nature Communications. https://doi.org/10.1101/2020.03.03.974378

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huffer, S., Clark, M. E., Ning, J. C., Blanch, H. W., & Clark, D. S. (2011). Role of alcohols in growth, lipid composition, and membrane fluidity of yeasts, bacteria, and archaea. Applied and Environmental Microbiology, 77(18), 6400–6408. https://doi.org/10.1128/AEM.00694-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. My, L., Ghandour Achkar, N., Viala, J. P., & Bouveret, E. (2015). Reassessment of the genetic regulation of fatty acid synthesis in Escherichia coli: Global positive control by the functional dual regulator FadR. Journal of Bacteriology, 197(11), 1862–1872. https://doi.org/10.1128/JB.00064-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gerhardt, E. C. M., Rodrigues, T. E., Müller-Santos, M., Pedrosa, F. O., Souza, E. M., Forchhammer, K., & Huergo, L. F. (2015). The bacterial signal transduction protein GlnB regulates the committed step in fatty acid biosynthesis by acting as a dissociable regulatory subunit of acetyl-CoA carboxylase. Molecular Microbiology, 95(6), 1025–1035. https://doi.org/10.1111/mmi.12912

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Y. M., & Rock, C. O. (2016). Fatty acid and phospholipid biosynthesis in prokaryotes. Biochemistry of lipids, lipoproteins and membranes: Sixth Edition. Elsevier. https://doi.org/10.1016/B978-0-444-63438-2.00003-1

  19. Cronan, J. E., & Thomas, J. (2009). Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Complex enzymes in microbial natural product biosynthesis, part B: Polyketides, aminocoumarins and carbohydrates (1st ed., Vol. 459). Elsevier Inc. https://doi.org/10.1016/S0076-6879(09)04617-5

  20. Sherkhanov, S., Korman, T. P., & Bowie, J. U. (2014). Improving the tolerance of Escherichia coli to medium-chain fatty acid production. Metabolic Engineering, 25, 1–7. https://doi.org/10.1016/j.ymben.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  21. Lennen, R. M., & Pfleger, B. F. (2012). Engineering Escherichia coli to synthesize free fatty acids. Trends in Biotechnology, 30(12), 659–667. https://doi.org/10.1016/j.tibtech.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  22. Iram, S. H., & Cronan, J. E. (2006). The β-oxidation systems of Escherichia coli and Salmonella enterica are not functionally equivalent. Journal of Bacteriology, 188(2), 599–608. https://doi.org/10.1128/JB.188.2.599-608.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Overath, P., Pauli, G., & Schairer, H. U. (1969). Fatty acid degradation in Escherichia coli. European Journal of Biochemistry, 7(4), 559–574. https://doi.org/10.1111/j.1432-1033.1969.tb19644.x

    Article  CAS  PubMed  Google Scholar 

  24. Raman, N., Black, P. N., & DiRusso, C. C. (1997). Characterization of the fatty acid-responsive transcription factor FadR. Biochemical and genetic analyses of the native conformation and functional domains. Journal of Biological Chemistry, 272(49), 30645–30650. https://doi.org/10.1074/jbc.272.49.30645

    Article  CAS  Google Scholar 

  25. Feng, Y., & Cronan, J. E. (2011). Complex binding of the FabR repressor of bacterial unsaturated fatty acid biosynthesis to its cognate promoters. Molecular Microbiology, 80(1), 195–218. https://doi.org/10.1111/j.1365-2958.2011.07564.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. DiRusso, C. O., Metzger, A. K., & Heimert, T. L. (1993). Regulation of transcription of genes required for fatty acid transport and unsaturated fatty acid biosynthesis in Escherichia coli by FadR. Molecular Microbiology, 7(2), 311–322. https://doi.org/10.1111/j.1365-2958.1993.tb01122.x

    Article  CAS  PubMed  Google Scholar 

  27. Naggert, J., Narasimhan, M. L., DeVeaux, L., Cho, H., Randhawa, Z. I., Cronan, J. E., et al. (1991). Cloning, sequencing, and characterization of Escherichia coli thioesterase II. Journal of Biological Chemistry, 266(17), 11044–11050. https://doi.org/10.1016/s0021-9258(18)99125-8

    Article  CAS  Google Scholar 

  28. Sun, Y., & O’Riordan, M. X. D. (2013). Regulation of bacterial pathogenesis by intestinal short-chain fatty acids. Advances in applied microbiology (1st ed., Vol. 85). Elsevier Inc. https://doi.org/10.1016/B978-0-12-407672-3.00003-4

  29. Roe, A. J., McLaggan, D., Davidson, I., O’Byrne, C., & Booth, I. R. (1998). Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. Journal of Bacteriology, 180(4), 767–772. https://doi.org/10.1128/jb.180.4.767-772.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chung, H. J., Bang, W., & Drake, M. A. (2006). Stress response of Escherichia coli. Comprehensive Reviews in Food Science and Food Safety, 5(3), 52–64. https://doi.org/10.1111/j.1541-4337.2006.00002.x

    Article  CAS  Google Scholar 

  31. Zhang, X., Li, M., Agrawal, A., & San, K. Y. (2011). Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases. Metabolic Engineering, 13(6), 713–722. https://doi.org/10.1016/j.ymben.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  32. Jin, Q., & Kirk, M. F. (2018). pH as a primary control in environmental microbiology: 1. Thermodynamic perspective. Frontiers in Environmental Science, 6, 1–15. https://doi.org/10.3389/fenvs.2018.00021

    Article  Google Scholar 

  33. Scheel, R., Ho, T., Kageyama, Y., Masisak, J., Mckenney, S., Lundgren, B., & Nmoura, C. (2021). Optimizing a fed-batch high-density fermentation process for medium chain-length poly(3-hydroxyalkanoates) in Escherichia coli. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2021.618259

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tan, Z., Yoon, J. M., Chowdhury, A., Burdick, K., Jarboe, L. R., Maranas, C. D., & Shanks, J. V. (2018). Engineering of E. coli inherent fatty acid biosynthesis capacity to increase octanoic acid production. Biotechnology for Biofuels, 11(1), 1–15. https://doi.org/10.1186/s13068-018-1078-z

    Article  CAS  Google Scholar 

  35. Bugg, T. D. H. (1999). Bacterial peptidoglycan biosynthesis and its inhibition. Comprehensive Natural Products Chemistry. https://doi.org/10.1016/b978-0-08-091283-7.00080-1

    Article  Google Scholar 

  36. Guan, N., Li, J., Shin, H., & dong, Du, G., Chen, J., & Liu, L. (2017). Microbial response to environmental stresses: From fundamental mechanisms to practical applications. Applied Microbiology and Biotechnology, 101(10), 3991–4008. https://doi.org/10.1007/s00253-017-8264-y

    Article  CAS  PubMed  Google Scholar 

  37. Varela, C. A., Baez, M. E., & Agosin, E. (2004). Osmotic stress response: Quantification of cell maintenance and metabolic fluxes in a lysine-overproducing strain of Corynebacterium glutamicum. Applied and Environmental Microbiology, 70(7), 4222–4229. https://doi.org/10.1128/AEM.70.7.4222-4229.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aftab, M. N., Iqbal, I., Riaz, F., Karadag, A., & Tabatabaei, M. (2019). Different pretreatment methods of lignocellulosic biomass for use in biofuel production. Biomass for bioenergy-recent trends and future challenges. Retrieved from https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics

  39. Piotrowski, J. S., Zhang, Y., Bates, D. M., Keating, D. H., Sato, T. K., Ong, I. M., & Landick, R. (2014). Death by a thousand cuts: The challenges and diverse landscape of lignocellulosic hydrolysate inhibitors. Frontiers in Microbiology, 5, 1–8. https://doi.org/10.3389/fmicb.2014.00090

    Article  Google Scholar 

  40. Wu, J., Wang, Z., Zhang, X., Zhou, P., Xia, X., & Dong, M. (2019). Improving medium chain fatty acid production in Escherichia coli by multiple transporter engineering. Food Chemistry, 272, 628–634. https://doi.org/10.1016/j.foodchem.2018.08.102

    Article  CAS  PubMed  Google Scholar 

  41. He, L., Xiao, Y., Gebreselassie, N., Zhang, F., Antoniewicz, M. R., Tang, Y. J., & Peng, L. (2014). Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis. Biotechnology and Bioengineering, 111(3), 575–585. https://doi.org/10.1002/bit.25124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fernández, L., & Hancock, R. E. W. (2012). Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance. Clinical Microbiology Reviews, 25(4), 661–681. https://doi.org/10.1128/CMR.00043-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chakraborty, S., Winardhi, R. S., Morgan, L. K., Yan, J., & Kenney, L. J. (2017). Non-canonical activation of OmpR drives acid and osmotic stress responses in single bacterial cells. Nature Communications. https://doi.org/10.1038/s41467-017-02030-0

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sánchez-Clemente, R., Igeño, M. I., Población, A. G., Guijo, M. I., Merchán, F., & Blasco, R. (2018). Study of pH changes in media during bacterial growth of several environmental strains. Proceedings, 2(20), 1297. https://doi.org/10.3390/proceedings2201297

    Article  Google Scholar 

  45. Guan, N., & Liu, L. (2019). Microbial response to acid stress: Mechanisms and applications. Applied Microbiology and Biotechnology, 104(1), 51–65. https://doi.org/10.1007/s00253-019-10226-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Royce, L. A., Liu, P., Stebbins, M. J., Hanson, B. C., & Jarboe, L. R. (2013). The damaging effects of short chain fatty acids on Escherichia coli membranes. Applied Microbiology and Biotechnology, 97(18), 8317–8327. https://doi.org/10.1007/s00253-013-5113-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wilbanks, B., & Trinh, C. T. (2017). Comprehensive characterization of toxicity of fermentative metabolites on microbial growth Mike Himmel. Biotechnology for Biofuels, 10(1), 1–11. https://doi.org/10.1186/s13068-017-0952-4

    Article  CAS  Google Scholar 

  48. Volker, A. R., Gogerty, D. S., Bartholomay, C., Hennen-Bierwagen, T., Zhu, H., & Bobik, T. A. (2014). Fermentative production of short-chain fatty acids in Escherichia coli. Microbiology (United Kingdom), 160, 1513–1522. https://doi.org/10.1099/mic.0.078329-0

    Article  CAS  Google Scholar 

  49. Battesti, A., Majdalani, N., & Gottesman, S. (2011). The RpoS-mediated general stress response in Escherichia coli *. Annual Review of Microbiology, 65, 189–213. https://doi.org/10.1146/annurev-micro-090110-102946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jung, I. L., & Kim, I. G. (2003). Polyamines and glutamate decarboxylase-based acid resistance in Escherichia coli. Journal of Biological Chemistry, 278(25), 22846–22852. https://doi.org/10.1074/jbc.M212055200

    Article  CAS  Google Scholar 

  51. Shabala, L., & Ross, T. (2008). Cyclopropane fatty acids improve Escherichia coli survival in acidified minimal media by reducing membrane permeability to H+ and enhanced ability to extrude H+. Research in Microbiology, 159(6), 458–461. https://doi.org/10.1016/j.resmic.2008.04.011

    Article  CAS  PubMed  Google Scholar 

  52. Romantsov, T., Guan, Z., & Wood, J. M. (2009). Cardiolipin and the osmotic stress responses of bacteria. Biochimica et Biophysica Acta - Biomembranes, 1788(10), 2092–2100. https://doi.org/10.1016/j.bbamem.2009.06.010

    Article  CAS  Google Scholar 

  53. Kanjee, U., & Houry, W. A. (2013). Mechanisms of acid resistance in Escherichia coli. Annual Review of Microbiology, 67(May), 65–81. https://doi.org/10.1146/annurev-micro-092412-155708

    Article  CAS  PubMed  Google Scholar 

  54. Imatoukene, N., Back, A., Nonus, M., Thomasset, B., Rossignol, T., & Nicaud, J. M. (2020). Fermentation process for producing CFAs using Yarrowia lipolytica. Journal of Industrial Microbiology and Biotechnology, 47(4–5), 403–412. https://doi.org/10.1007/s10295-020-02276-6

    Article  CAS  PubMed  Google Scholar 

  55. Capitani, G., De Biase, D., Aurizi, C., Gut, H., Bossa, F., & Grütter, M. G. (2003). Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO Journal, 22(16), 4027–4037. https://doi.org/10.1093/emboj/cdg403

    Article  CAS  Google Scholar 

  56. Bearson, B. L., Lee, I. S., & Casey, T. A. (2009). Escherichia coli O157: H7 glutamate- and arginine-dependent acid-resistance systems protect against oxidative stress during extreme acid challenge. Microbiology, 155(3), 805–812. https://doi.org/10.1099/mic.0.022905-0

    Article  CAS  PubMed  Google Scholar 

  57. Xu, Y., Zhao, Z., Tong, W., Ding, Y., Liu, B., Shi, Y., et al. (2020). An acid-tolerance response system protecting exponentially growing Escherichia coli. Nature Communications, 11(1), 1–13. https://doi.org/10.1038/s41467-020-15350-5

    Article  CAS  Google Scholar 

  58. Bekhit, A., Fukamachi, T., Saito, H., & Kobayashi, H. (2011). The role of OmpC and OmpF in acidic resistance in Escherichia coli. Biological and Pharmaceutical Bulletin, 34(3), 330–334. https://doi.org/10.1248/bpb.34.330

    Article  CAS  PubMed  Google Scholar 

  59. Kawaji, H., Mizuno, T., & Mizushima, S. (1979). Influence of molecular size and osmolarity of sugars and dextrans on the synthesis of outer membrane proteins O-8 and O-9 of Escherichia coli K-12. Journal of Bacteriology, 140(3), 843–847. https://doi.org/10.1128/jb.140.3.843-847.1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Higashitani, A., Nishimura, Y., Hara, H., Aiba, H., Mizuno, T., & Horiuchi, K. (1993). Osmoregulation of the fatty acid receptor gene fadL in Escherichia coli. MGG Molecular & General Genetics, 240(3), 339–347. https://doi.org/10.1007/BF00280384

    Article  CAS  Google Scholar 

  61. Chakraborty, S., & Kenney, L. J. (2018). A new role of OmpR in acid and osmotic stress in salmonella and E. coli. Frontiers in Microbiology, 9, 1–14. https://doi.org/10.3389/fmicb.2018.02656

    Article  Google Scholar 

  62. Shimizu, K. (2013). Metabolic regulation of a bacterial cell system with emphasis on Escherichia coli metabolism. ISRN Biochemistry, 2013, 1–47. https://doi.org/10.1155/2013/645983

    Article  CAS  Google Scholar 

  63. Ramani, N., Hedeshian, M., & Freundlich, M. (1994). micF antisense RNA has a major role in osmoregulation of OmpF in Escherichia coli. Journal of Bacteriology, 176(16), 5005–5010.

    Article  CAS  Google Scholar 

  64. Lucht, J. M., & Bremer, E. (1994). Adaptation of Escherichia coli to high osmolarity environments: Osmoregulation of the high-affinity glycine betaine transport system ProU. FEMS Microbiology Reviews, 14(1), 3–20. https://doi.org/10.1111/j.1574-6976.1994.tb00067.x

    Article  CAS  PubMed  Google Scholar 

  65. Goh, E. B., Siino, D. F., & Igo, M. M. (2004). The Escherichia coli tppB (ydgR) gene represents a new class of OmpR-regulated genes. Journal of Bacteriology, 186(12), 4019–4024. https://doi.org/10.1128/JB.186.12.4019-4024.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Anderson, J., Delihas, N., Ikenaka, K., Green, P. J., Pines, O., Ilercil, O., & Inouye, M. (1987). The isolation and characterization of RNA coded by micF gene in E. coli. Nucleic Acids Research, 15(5), 2089–2101.

    Article  Google Scholar 

  67. Inoue, K., Matsuzaki, H., Matsumoto, K., & Shibuya, I. (1997). Unbalanced membrane phospholipid compositions affect transcriptional expression of certain regulatory genes in Escherichia coli. Journal of Bacteriology, 179(9), 2872–2878. https://doi.org/10.1128/jb.179.9.2872-2878.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gough, D. R., & Cotter, T. G. (2011). Hydrogen peroxide: A Jekyll and Hyde signalling molecule. Cell Death and Disease, 2(10), 1–8. https://doi.org/10.1038/cddis.2011.96

    Article  CAS  Google Scholar 

  69. Kashmiri, Z. N., & Mankar, S. A. (2014). Free radicals and oxidative stress in bacteria. International Journal of Current Microbiology and Applied Sciences, 3(9), 34–40.

    Google Scholar 

  70. Avery, S. V. (2011). Molecular targets of oxidative stress. Biochemical Journal, 434(2), 201–210. https://doi.org/10.1042/BJ20101695

    Article  CAS  Google Scholar 

  71. Imlay, J. A. (2013). The molecular mechanisms and physiological consequences of oxidative stress: Lessons from a model bacterium. Nature Reviews Microbiology, 11(7), 443–454. https://doi.org/10.1038/nrmicro3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lennen, R. M., Kruziki, M. A., Kumar, K., Zinkel, R. A., Burnum, K. E., Lipton, M. S., et al. (2011). Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Applied and Environmental Microbiology, 77(22), 8114–8128. https://doi.org/10.1128/AEM.05421-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhao, X., & Drlica, K. (2014). Reactive oxygen species and the bacterial response to lethal stress. Current Opinion in Microbiology, 21, 1–6. https://doi.org/10.1016/j.mib.2014.06.008

    Article  CAS  PubMed  Google Scholar 

  74. Rowlett, V. W., Mallampalli, V. K. P. S., Karlstaedt, A., Dowhan, W., Taegtmeyer, H., Margolin, W., & Vitrac, H. (2017). Impact of membrane phospholipid alterations in Escherichia coli on cellular function and bacterial stress adaptation. Journal of Bacteriology, 199(13), 10. https://doi.org/10.1128/JB.00849-16

    Article  Google Scholar 

  75. Blankenhorn, D., Phillips, J., & Slonczewski, J. L. (1999). Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. Journal of Bacteriology, 181(7), 2209–2216. https://doi.org/10.1128/jb.181.7.2209-2216.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Maurer, L. M., Yohannes, E., Bondurant, S. S., Radmacher, M., & Slonczewski, J. L. (2005). pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. Journal of Bacteriology, 187(1), 304–319. https://doi.org/10.1128/JB.187.1.304-319.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim, J. S., & Holmes, R. K. (2012). Characterization of OxyR as a negative transcriptional regulator that represses catalase production in corynebacterium diphtheriae. PLoS ONE. https://doi.org/10.1371/journal.pone.0031709

    Article  PubMed  PubMed Central  Google Scholar 

  78. Farr, S. B., & Kogoma, T. (1991). Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiological Reviews, 55(4), 561–585. https://doi.org/10.1128/mmbr.55.4.561-585.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Semchyshyn, H. (2009). Hydrogen peroxide-induced response in E. coli and S. cerevisiae: Different stages of the flow of the genetic information. Central European Journal of Biology, 4(2), 142–153. https://doi.org/10.2478/s11535-009-0005-5

    Article  CAS  Google Scholar 

  80. Pomposiello, P. J., Bennik, M. H. J., & Demple, B. (2001). Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. Journal of Bacteriology, 183(13), 3890–3902. https://doi.org/10.1128/JB.183.13.3890-3902.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shin, K. S., & Lee, S. K. (2017). Increasing extracellular free fatty acid production in Escherichia coli by disrupting membrane transport systems. Journal of Agricultural and Food Chemistry, 65(51), 11243–11250. https://doi.org/10.1021/acs.jafc.7b04521

    Article  CAS  PubMed  Google Scholar 

  82. Lennen, R. M., Politz, M. G., Kruziki, M. A., & Pfleger, B. F. (2013). Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. Journal of Bacteriology, 195(1), 135–144. https://doi.org/10.1128/JB.01477-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Edgar, R., & Bibi, E. (1997). MdfA, an Escherichia coli multidrug resistance protein with an extraordinarily broad spectrum of drug recognition. Journal of Bacteriology, 179(7), 2274–2280. https://doi.org/10.1128/jb.179.7.2274-2280.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cabiscol, E., Tamarit, J., & Ros, J. (2000). Oxidative stress in bacteria and protein damage by reactive oxygen species. International Microbiology, 3(1), 3–8. https://doi.org/10.2436/im.v3i1.9235

    Article  CAS  PubMed  Google Scholar 

  85. Pradenas, G. A., Paillavil, B. A., Reyes-Cerpa, S., Pérez-Donoso, J. M., & Vásquez, C. C. (2012). Reduction of the monounsaturated fatty acid content of Escherichia coli results in increased resistance to oxidative damage. Microbiology, 158(5), 1279–1283. https://doi.org/10.1099/mic.0.056903-0

    Article  CAS  PubMed  Google Scholar 

  86. Søballe, B., & Poole, R. K. (2000). Ubiquinone limits oxidative stress in Escherichia coli. Microbiology, 146(4), 787–796. https://doi.org/10.1099/00221287-146-4-787

    Article  PubMed  Google Scholar 

  87. Ji, M., Barnwell, C. V., & Grunden, A. M. (2015). Characterization of recombinant glutathione reductase from the psychrophilic Antarctic bacterium Colwellia psychrerythraea. Extremophiles, 19(4), 863–874. https://doi.org/10.1007/s00792-015-0762-1

    Article  CAS  PubMed  Google Scholar 

  88. Agrawal, S., Jaswal, K., Shiver, A. L., Balecha, H., Patra, T., & Chaba, R. (2017). A genome-wide screen in Escherichia coli reveals that ubiquinone is a key antioxidant for metabolism of long-chain fatty acids. Journal of Biological Chemistry, 292(49), 20086–20099. https://doi.org/10.1074/jbc.M117.806240

    Article  CAS  Google Scholar 

  89. Chen, Y. Y., & Gänzle, M. G. (2016). Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli. International Journal of Food Microbiology, 222, 16–22. https://doi.org/10.1016/j.ijfoodmicro.2016.01.017

    Article  CAS  PubMed  Google Scholar 

  90. Soini, J., Falschlehner, C., Mayer, C., Böhm, D., Weinel, S., Panula, J., et al. (2005). Transient increase of ATP as a response to temperature up-shift in Escherichia coli. Microbial Cell Factories, 4, 14. https://doi.org/10.1186/1475-2859-4-9

    Article  CAS  Google Scholar 

  91. Clarkson, D. T., Earnshaw, M. J., White, P. J., & Cooper, H. D. (1988). Temperature dependent factors influencing nutrient uptake: An analysis of responses at different levels of organization. Symposia of the Society for Experimental Biology, 42, 281–309.

    CAS  PubMed  Google Scholar 

  92. Liu, H., Yu, C., Feng, D., Cheng, T., Meng, X., Liu, W., et al. (2012). Production of extracellular fatty acid using engineered Escherichia coli. Microbial Cell Factories, 11(41), 1–13. https://doi.org/10.1186/1475-2859-11-41

    Article  CAS  Google Scholar 

  93. Marr, A. G., & Ingraham, J. L. (1962). Effect of temperature on fatty acids in Escherichia coli. Transactions of the Indian Institute of Metals, 84(6), 1260–1267.

    CAS  Google Scholar 

  94. Osman, Y. A., Gbr, M. M., Abdelrazak, A., & Mowafy, A. M. (2018). Fatty acids and survival of bacteria in Hammam Pharaon springs Egypt. Egyptian Journal of Basic and Applied Sciences, 5(2), 165–170. https://doi.org/10.1016/j.ejbas.2018.04.003

    Article  Google Scholar 

  95. Lee, S., Lee, S., Yoon, Y. J., & Lee, J. (2013). Enhancement of long-chain fatty acid production in Escherichia coli by coexpressing genes, including fabf, involved in the elongation cycle of fatty acid biosynthesis. Applied Biochemistry and Biotechnology, 169(2), 462–476. https://doi.org/10.1007/s12010-012-9987-y

    Article  CAS  PubMed  Google Scholar 

  96. Hasan, C. M. M., & Shimizu, K. (2008). Effect of temperature up-shift on fermentation and metabolic characteristics in view of gene expressions in Escherichia coli. Microbial Cell Factories, 7(1), 35. https://doi.org/10.1186/1475-2859-7-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sinensky, M. (1971). Temperature control of phospholipid biosynthesis in Escherichia coli. Journal of Bacteriology, 106(2), 449–455. https://doi.org/10.1128/jb.106.2.449-455.1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mansilla, M. C., Cybulski, L. E., Albanesi, D., & De Mendoza, D. (2004). Control of membrane lipid fluidity by molecular thermosensors. Journal of Bacteriology, 186(20), 6681–6688. https://doi.org/10.1128/JB.186.20.6681-6688.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. van Beilen, J. W. A., & Hellingwerf, K. J. (2016). All three endogenous quinone species of Escherichia coli are involved in controlling the activity of the aerobic/anaerobic response regulator ArcA. Frontiers in Microbiology, 7, 1–11. https://doi.org/10.3389/fmicb.2016.01339

    Article  Google Scholar 

  100. Gui, L., Sunnarborg, A., & Laporte, D. C. (1996). Regulated expression of a repressor protein: FadR activates iclR. Journal of Bacteriology, 178(15), 4704–4709. https://doi.org/10.1128/jb.178.15.4704-4709.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Park, D. M., Akhtar, M. S., Ansari, A. Z., Landick, R., & Kiley, P. J. (2013). The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genetics, 9(10), 15. https://doi.org/10.1371/journal.pgen.1003839

    Article  CAS  Google Scholar 

  102. Privalle, C. T., & Fridovich, I. (1987). Induction of superoxide dismutase in Escherichia coli by heat shock. Proceedings of the National Academy of Sciences of the United States of America, 84(9), 2723–2726. https://doi.org/10.1073/pnas.84.9.2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Utsumi, R., Horie, T., Katoh, A., Kaino, Y., Tanabe, H., & Noda, M. (1996). Isolation and characterization of the heat-responsive genes in Escherichia coli. Bioscience, Biotechnology and Biochemistry, 60(2), 309–315. https://doi.org/10.1271/bbb.60.309

    Article  CAS  Google Scholar 

  104. Gutierrez-Ríos, R. M., Freyre-Gonzalez, J. A., Resendis, O., Collado-Vides, J., Saier, M., & Gosset, G. (2007). Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli. BMC Microbiology, 7, 1–18. https://doi.org/10.1186/1471-2180-7-53

    Article  CAS  Google Scholar 

  105. Nelson, S. M., Attwell, R. W., Dawson, M., & Smith, C. (1996). The effect of temperature on viability of carbon- and nitrogen-starved Escherichia coli. Microbial Ecology, 32(1), 11–21.

    Article  CAS  Google Scholar 

  106. Zakaria Gomaa, E. (2014). Production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol. Brazilian Archives of Biology and Technology, 57(1), 145–154.

    Article  Google Scholar 

  107. Calvey, C. H., Su, Y. K., Willis, L. B., McGee, M., & Jeffries, T. W. (2016). Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi. Bioresource Technology, 200, 780–788. https://doi.org/10.1016/j.biortech.2015.10.104

    Article  CAS  PubMed  Google Scholar 

  108. Mao, X. J., Huo, Y. X., Buck, M., Kolb, A., & Wang, Y. P. (2007). Interplay between CRP-cAMP and PII-Ntr systems forms novel regulatory network between carbon metabolism and nitrogen assimilation in Escherichia coli. Nucleic Acids Research, 35(5), 1432–1440. https://doi.org/10.1093/nar/gkl1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Miranda-Rios, J., Sanchez-Pescador, R., Urdea, M., & Covarrubias, A. A. (1987). The complete nucleotide sequence of the glnALG operon of Escherichia coli K12. Nucleic Acids Research, 15(6), 14–19.

    Google Scholar 

  110. Huergo, L. F., & Dixon, R. (2015). The emergence of 2-oxoglutarate as a master regulator metabolite. Microbiology and Molecular Biology Reviews, 79(4), 419–435. https://doi.org/10.1128/mmbr.00038-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ziervogel, B. K., & Roux, B. (2013). The binding of antibiotics in OmpF porin. Structure, 21(1), 76–87. https://doi.org/10.1016/j.str.2012.10.014

    Article  CAS  PubMed  Google Scholar 

  112. Liu, X., & Ferenci, T. (1998). Regulation of porin-mediated outer membrane permeability by nutrient limitation in Escherichia coli. Journal of Bacteriology, 180(15), 3917–3922. https://doi.org/10.1128/jb.180.15.3917-3922.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kumar, R., & Shimizu, K. (2010). Metabolic regulation of Escherichia coli and its gdhA, glnL, gltB, D mutants under different carbon and nitrogen limitations in the continuous culture. Microbial Cell Factories, 9, 1–17. https://doi.org/10.1186/1475-2859-9-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

None.

Funding

This research work was supported by WOS-A (Women Scientists Scheme-A) research grant (WOS-A/LS-438/2017) from DST (Department of Science and Technology), Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

NS: Writing, reviewing and editing the manuscript. HS: Reviewing and editing of manuscript. DA: Conceptualising, Supervising, writing, reviewing and editing of manuscript.

Corresponding authors

Correspondence to Harinder Singh or Deepti Appukuttan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics Approval and Participant’s Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawant, N., Singh, H. & Appukuttan, D. Overview of the Cellular Stress Responses Involved in Fatty Acid Overproduction in E. coli. Mol Biotechnol 64, 373–387 (2022). https://doi.org/10.1007/s12033-021-00426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00426-4

Keywords

Navigation