Skip to main content
Log in

Two GH16 Endo-1,3-β-D-Glucanases from Formosa agariphila and F. algae Bacteria Have Complete Different Modes of Laminarin Digestion

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

There is a comparative analysis of primary structures and catalytic properties of two recombinant endo-1,3-β-D-glucanases from marine bacteria Formosa agariphila KMM 3901 and previously reported F. algae KMM 3553. Both enzymes had the same molecular mass 61 kDa, temperature optimum 45 °C, and comparable ranges of thermal stability and Km. While the set of products of laminarin hydrolysis with endo-1,3-β-D-glucanase from F. algae was stable of the reaction with pH 4–9, the pH stability of the products of laminarin hydrolysis with endo-1,3-β-D-glucanase from F. agariphila varied at pH 5–6 for DP 2, at pH 4 and 7–8 for DP 5, and at pH 9 for DP 3. There were differences in modes of action of these enzymes on laminarin and 4-methylumbelliferyl-β-D-glucoside (Umb), indicating the presence of transglycosylating activity of endo-1,3-β-D-glucanase from F. algae and its absence in endo-1,3-β-D-glucanase from F. agariphila. While endo-1,3-β-D-glucanase from F. algae produced transglycosylated laminarioligosaccharides with a degree of polymerization 2–10 (predominately 3–4), endo-1,3-β-D-glucanase from F. agariphila did not catalyze transglycosylation in our lab parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CM:

Carboxymethylated

DP:

Degree of polymerization

GH:

Glycoside hydrolase

HPLC:

High-performance liquid chromatography

LOS:

Laminarioligosaccharides

NMR:

Nuclear magnetic resonance

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

TLC:

Thin-layer chromatography

Umb:

4-Methylumbelliferyl-β-D-glucoside

References

  1. Menshova, R. V., Ermakova, S. P., Anastyuk, S. D., Isakov, V. V., Dubrovskaya, Y. V., Kusaykin, M. I., Um, B. H., & Zvyagintseva, T. N. (2014). Structure, enzymatic transformation and anticancer activity of branched high molecular weight laminarin from brown alga Eisenia bicyclis. Carbohydrate Polymers, 99, 101–109.

    Article  CAS  PubMed  Google Scholar 

  2. Kim, K. H., Kim, Y. W., Kim, H. B., Lee, B. J., & Lee, D. S. (2006). Anti-apoptotic activity of laminarin polysaccharides and their enzymatically hydrolyzed oligosaccharides from Laminaria japonica. Biotechnology Letters, 28, 439–446.

    Article  CAS  PubMed  Google Scholar 

  3. Zvyagintseva, T. N., Elyakova, L. A., & Isakov, V. V. (1995). The enzymatic transformations of laminarins in 1,3;1,6-β-D-glucans with immunostimulating activity. Russian Journal of Bioorganic Chemistry, 21, 218–225.

    CAS  Google Scholar 

  4. Borriss, R., Krah, M., Brumer, H., Kerzhner, M. A., Ivanen, D. R., Eneyskaya, E. V., Elyakova, L. A., Shishlyannikov, S. M., Shabalin, K. A., & Neustroev, K. N. (2003). Enzymatic synthesis of 4-methylumbelliferyl (1 -> 3)-beta-D-glucooligosaccharides - new substrates for beta-1,3–1,4-D-glucanase. Carbohydrate Research, 338, 1455–1467.

    Article  CAS  PubMed  Google Scholar 

  5. Zvyagintseva, T. N., Makar’eva, T. N., Ermakova, S. P., & Elyakova, L. A. (1998). The Production of p-Nitrophenyl Laminarioligosides through the Transglycosylation Reaction Catalyzed by Endo-1,3-β-D-Glucanase from a Marine Mollusk. Russian Journal of Bioorganic Chemistry, 24, 195–199.

    Google Scholar 

  6. Pesentseva, M. S., Kusaykin, M. I., Anastyuk, S. D., Sova, V. V., & Zvyagintseva, T. N. (2008). Catalytic properties and mode of action of endo-(1–>3)-beta-D-glucanase and beta-D-glucosidase from the marine mollusk Littorina kurila. Carbohydrate Research, 343, 2393–2400.

    Article  CAS  PubMed  Google Scholar 

  7. Belik, A. A., & Zueva, A. O. (2018). Isolation, properties and amino acid sequences of two 1,3-β-D-glucanases from Gastropoda Lambis sp. Article in Russian. Bulletin of the Far East Branch of the Russian Academy of Sciences, 2, 159–167.

    Google Scholar 

  8. Kovalchuk, S. N., Bakunina, I. Y., Burtseva, Y. V., Emelyanenko, V. I., Kim, N. Y., Guzev, K. V., Kozhemyako, V. B., Rasskazov, V. A., & Zvyagintseva, T. N. (2009). An endo-(1–>3)-beta-D-glucanase from the scallop Chlamys albidus: Catalytic properties, cDNA cloning and secondary-structure characterization. Carbohydrate Research, 344, 191–197.

    Article  CAS  PubMed  Google Scholar 

  9. Kovalchuk, S. N., Sundukova, E. V., Kusaykin, M. I., Guzev, K. V., Anastiuk, S. D., Likhatskaya, G. N., Trifonov, E. V., Nurminski, E. A., Kozhemyako, V. B., Zvyagintseva, T. N., & Rasskazov, V. A. (2006). Purification, cDNA cloning and homology modeling of endo-1,3-beta-D-glucanase from scallop Mizuhopecten yessoensis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 143, 473–485.

    Article  Google Scholar 

  10. Kozhemyako, V. B., Rebrikov, D. V., Lukyanov, S. A., Bogdanova, E. A., Marin, A., Mazur, A. K., Kovalchuk, S. N., Agafonova, E. V., Sova, V. V., Elyakova, L. A., & Rasskazov, V. A. (2004). Molecular cloning and characterization of an endo-1,3-beta-D-glucanase from the mollusk Spisula sachalinensis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 137, 169–178.

    Article  Google Scholar 

  11. Kumagai, Y., Inoue, A., Tanaka, H., & Ojima, T. (2008). Preparation of beta-1,3-glucanase from scallop mid-gut gland drips and its use for production of novel heterooligosaccharides. Fisheries Science, 74, 1127–1136.

    Article  CAS  Google Scholar 

  12. Kumagai, Y., & Ojima, T. (2009). Enzymatic properties and the primary structure of a beta-1,3-glucanase from the digestive fluid of the Pacific abalone Haliotis discus hannai. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 154, 113–120.

    Article  Google Scholar 

  13. Kumagai, Y., & Ojima, T. (2010). Isolation and characterization of two types of beta-1,3-glucanases from the common sea hare Aplysia kurodai. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 155, 138–144.

    Article  Google Scholar 

  14. Ojima, T., M. M. Rahman, Y. Kumagai, R. Nishiyama, J. Narsico, and A. Inoue (2018) Polysaccharide-Degrading Enzymes From Marine Gastropods. B. S. Moore (ed.) Marine Enzymes and Specialized Metabolism, Pt B. Elsevier Academic Press Inc USA pp. 457–497

  15. Sova, V. V., Elyakova, L. A., & Vaskovsky, V. E. (1970). Purification and some properties of β-1,3-glucan glucanohydrolase from the crystalline style of bivalvia, Spisula sachalinensis. Biochimica et Biophysica Acta, 212, 111–115.

    Article  CAS  PubMed  Google Scholar 

  16. Zvyagintseva, T. N., & Elyakova, L. A. (1994). Mechanism of action and specificity of endo-1,3-beta-D-glucanases from marine mollusks. Russian Journal of Bioorganic Chemistry, 20, 453–474.

    CAS  Google Scholar 

  17. Ilari, A., Fiorillo, A., Angelaccio, S., Florio, R., Chiaraluce, R., van der Oost, J., & Consalvi, V. (2009). Crystal structure of a family 16 endoglucanase from the hyperthermophile Pyrococcus furiosus- structural basis of substrate recognition. FEBS Journal, 276, 1048–1058.

    Article  CAS  Google Scholar 

  18. Trincone, A. (2013). Marine Enzymes for Biocatalysis. Woodhead Publishing Limited.

    Google Scholar 

  19. de Marco, J. L., & Felix, C. R. (2007). Purification and characterization of a beta-glucanase produced by Trichoderma harzianum showing biocontrol potential. Brazilian Archives of Biology and Technology, 50, 21–29.

    Article  Google Scholar 

  20. Villettaz, J. C., Steiner, D., & Trogus, H. (1984). The Use of a Beta-Glucanase as an Enzyme in Wine Clarification and Filtration. American Journal of Enology and Viticulture, 1984(35), 253–256.

    Article  Google Scholar 

  21. Jose, D., et al. (2014). Potential application of beta-1, 3 glucanase from an environmental isolate of Pseudomonas aeruginosa MCCB 123 in fungal DNA extraction. Indian Journal of Experimental Biology, 52, 89–96.

    CAS  PubMed  Google Scholar 

  22. Musoni, M., et al. (2015). Bioreactor design and implementation strategies for the cultivation of filamentous fungi and the production of fungal metabolites: From traditional methods to engineered systems. Biotechnologie, Agronomie, Societe et Environnement, 19, 430–442.

    Google Scholar 

  23. Bagal-Kestwal, D., et al. (2010). Electrochemical beta(1 -> 3)-D-glucan biosensors fabricated by immobilization of enzymes with gold nanoparticles on platinum electrode. Biosensors & Bioelectronics, 26, 118–125.

    Article  CAS  Google Scholar 

  24. Miyanishi, N., et al. (2004). Amperometric determination of laminarin using immobilized beta-1,3-glucanase. Biosensors & Bioelectronics, 19, 557–562.

    Article  CAS  Google Scholar 

  25. Mann, A. J., Hahnke, R. L., Huang, S., Werner, J., Xing, P., Barbeyron, T., Huettel, B., Stuber, K., Reinhardt, R., Harder, J., Glockner, F. O., Amann, R. I., & Teeling, H. (2013). The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Applied and Environment Microbiology, 79, 6813–6822.

    Article  CAS  Google Scholar 

  26. Kusaykin, M. I., Belik, A. A., Kovalchuk, S. N., Dmitrenok, P. S., Rasskazov, V. A., Isakov, V. V., & Zvyagintseva, T. N. (2017). A new recombinant endo-1,3-beta-D-glucanase from the marine bacterium Formosa algae KMM 3553: Enzyme characteristics and transglycosylation products analysis. World J. Microb. Biot., 33, 12.

    Article  Google Scholar 

  27. Sova, V. V., E. V. Levina, P. V. Andriyashchenko, S. N. Fedorov, and L. A. Elyakova (1994) Action of polyoxysteroids from starfishes and ophiuras on activity of β-1,3-glucanases. Chem. Nat. Comp. 647–651.

  28. Hantani, Y., Motoki, S., Miyagawa, A., Yamamura, H., & Oda, M. (2018). Transglycosylation Activity of Catalytic Domain Mutant of Endo-1,3-beta-glucanase from Cellulosimicrobium cellulans. Protein Peptide Lett., 25, 734–739.

    Article  CAS  Google Scholar 

  29. Tanabe, Y., & Oda, M. (2011). Molecular characterization of endo-1,3-beta-glucanase from Cellulosimicrobium cellulans: Effects of carbohydrate-binding module on enzymatic function and stability. Biochimica et Biophysica Acta, 1814, 1713–1719.

    Article  CAS  PubMed  Google Scholar 

  30. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  31. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  32. Zvyagintseva, T. N., Shevchenko, N. M., Popivnich, I. B., Isakov, V. V., Scobun, A. S., Sundukova, E. V., & Elyakova, L. A. (1999). A new procedure for the separation of water-soluble polysaccharides from brown seaweeds. Carbohydrate Research, 322, 32–39.

    Article  CAS  Google Scholar 

  33. Nelson, T. E., Scaletti, J. V., Smith, F., & Kirkwood, S. (1963). The use of enzymes in structural studies on polysaccharides: I. The mode of attack of a β-D-(1,3)-glucanase on laminarin. Canadian Journal of Chemistry, 41, 1671–1678.

    Article  CAS  Google Scholar 

  34. Pesentseva, M. S., Kovalchuk, S. N., Anastyuk, S. D., Kusaykin, M. I., Sova, V. V., Rasskazov, V. A., & Zvyagintseva, T. N. (2012). Endo-(1,3)-beta-D-glucanase GI from marine mollusk Littorina sitkana: Amino acid sequence and ESIMS/MS-estimated features of transglycosylation and hydrolysis reactions in comparison to analogous enzyme LIV from Pseudocardium sachalinensis. Journal of Molecular Catalysis B: Enzymatic, 75, 73–79.

    Article  CAS  Google Scholar 

  35. Nelson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry, 153, 375–380.

    Article  CAS  Google Scholar 

  36. Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2016). GenBank. Nucleic Acids Research, 44, D67-72.

    Article  CAS  PubMed  Google Scholar 

  37. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., & Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 42, D490-495.

    Article  CAS  PubMed  Google Scholar 

  38. Planas, A. (2000). Bacterial 1,3–1,4-beta-glucanases: Structure, function and protein engineering. Biochimica et Biophysica Acta, 154, 361–382.

    Article  Google Scholar 

  39. Bacon, J. S., Gordon, A. H., Jones, D., Taylor, I. F., & Webley, D. M. (1970). The separation of beta-glucanases produced by Cytophaga johnsonii and their role in the lysis of yeast cell walls. The Biochemical Journal, 120, 67–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. De La Cruz, E. M., & Pollard, T. D. (1995). Nucleotide-Free Actin: Stabilization by Sucrose and Nucleotide Binding Kinetics. Biochemistry, 34, 5452–5461.

    Article  Google Scholar 

  41. Chen, H. Z., Li, X. L., & Ljungdahl, L. G. (1997). Sequencing of a 1,3–1,4-beta-D-glucanase (Lichenase) from the anaerobic fungus Orpinomyces strain PC-2: Properties of the enzyme expressed in Escherichia coli and evidence that the gene has a bacterial origin. Journal of Bacteriology, 179, 6028–6034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kikuchi, T., Shibuya, H., & Jones, J. T. (2005). Molecular and biochemical characterization of an endo-beta-1,3-glucanase from the pinewood nematode Bursaphelenchus xylophilus acquired by horizontal gene transfer from bacteria. The Biochemical Journal, 389, 117–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Song, J. M., Nam, K., Sun, Y. U., Kang, M. H., Kim, C. G., Kwon, S. T., Lee, J., & Lee, Y. H. (2010). Molecular and biochemical characterizations of a novel arthropod endo-beta-1,3-glucanase from the Antarctic springtail, Cryptopygus antarcticus, horizontally acquired from bacteria. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 155, 403–412.

    Article  Google Scholar 

  44. Menaa, F., et al. (2020). Ecological and Industrial Implications of Dynamic Seaweed-Associated Microbiota Interactions. Marine Drugs, 18, 641.

    Article  PubMed Central  Google Scholar 

  45. Privalova, N. M., & Elyakova, L. A. (1978). Purification and some properties of endo-beta-(1–3)-glucanase from the marine bivalve Chlamys albidus. Comparative Biochemistry and Physiology. B, 60(3), 225–228.

    Article  Google Scholar 

  46. Zakharenko, A. M., et al. (2012). Catalytic properties and amino acid sequence of endo-1–>3-beta-D-glucanase from the marine mollusk Tapes literata. Biochemistry (Moscow), 77(8), 878–888.

    Article  CAS  Google Scholar 

  47. Bragatto, I., et al. (2010). Characterization of a beta-1,3-glucanase active in the alkaline midgut of Spodoptera frugiperda larvae and its relation to beta-glucan-binding proteins. Insect Biochemistry and Molecular Biology, 40(12), 861–872.

    Article  CAS  PubMed  Google Scholar 

  48. Belik, A., Silchenko, A., & Kusaykin, M. (2018). Two Novel Bi-Functional Gh 16 1,3-Β-D-Glucanases From Gastropoda Lambis Sp. FEBS Open Bio, 8, 239.

    Google Scholar 

Download references

Funding

The work was supported by the Grant of the Ministry of Education and Science of the Russian Federation, Grant No. 13.1902.21.0012 (Number of Agreement: 075–15-2020–796).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Belik.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belik, A.A., Rasin, A.B., Kusaykin, M.I. et al. Two GH16 Endo-1,3-β-D-Glucanases from Formosa agariphila and F. algae Bacteria Have Complete Different Modes of Laminarin Digestion. Mol Biotechnol 64, 434–446 (2022). https://doi.org/10.1007/s12033-021-00421-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00421-9

Keywords

Navigation