Skip to main content
Log in

CRISPR/Cas 9-Based Editing in the Production of Bioactive Molecules

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Plants, fungi, and bacteria synthesize a wide range of secondary metabolites that exhibit diverse biological activities. These bioactives, due to their potential benefits in research and therapeutics, have gained immense industrial importance. There is a need to synthesize these bioactives at significantly higher concentrations using cost-effective measures to be economically viable. However, the broader study of industrially important secondary metabolites has been hindered, thus, far due to a shortage of reliable, comparatively easy, and highly effective gene manipulation techniques. With the advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas), there is a revolution in the field of genetic engineering. CRISPR/Cas system, due to its simplicity and ease of use. This has widened its application in plant breeding, strain improvement, and engineering the metabolic pathways involved in the biochemical synthesis of industrially valuable bioactive. This review briefly introduces the CRISPR/Cas9 system and summarizes the applications of CRISPR/Cas9-mediated editing tools for the production of plant and fungal-derived bioactives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaur, N., et al. (2020). CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metabolic Engineering, 59, 76–86. https://doi.org/10.1016/j.ymben.2020.01.008

    Article  CAS  PubMed  Google Scholar 

  2. Lobanovska, M., & Pilla, G. (2017). Penicillin’s discovery and antibiotic resistance: Lessons for the future? The Yale Journal of Biology and Medicine, 90(1), 135–145.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kjærbølling, I., et al. (2019). Strategies to establish the link between biosynthetic gene clusters and secondary metabolites. Fungal Genetics and Biology, 130, 107–121. https://doi.org/10.1016/j.fgb.2019.06.001

    Article  CAS  PubMed  Google Scholar 

  4. Jiang, C., et al. (2021). Applications of CRISPR/Cas9 in the synthesis of secondary metabolites in filamentous Fungi. Frontiers in Microbiology, 12, 1–15. https://doi.org/10.3389/fmicb.2021.638096

    Article  Google Scholar 

  5. Barrangou, R., et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709–1712. https://doi.org/10.1126/science.1138140

    Article  CAS  PubMed  Google Scholar 

  6. Xu, X., et al. (2020). CRISPR/Cas9-mediated gene-editing technology in fruit quality improvement. Food Quality and Safety, 4(4), 159–166. https://doi.org/10.1093/fqsafe/fyaa028

    Article  CAS  Google Scholar 

  7. Mans, R., et al. (2015). CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Research, 15(2), 15. https://doi.org/10.1093/femsyr/fov004

    Article  CAS  Google Scholar 

  8. Nødvig, C. S., et al. (2015). A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS ONE, 10(7), e0133085. https://doi.org/10.1371/journal.pone.0133085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alagoz, Y., et al. (2016). Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Scientific Reports, 6(May), 1–9. https://doi.org/10.1038/srep30910

    Article  CAS  Google Scholar 

  10. Iaffaldano, B., Zhang, Y., & Cornish, K. (2016). CRISPR/Cas9 genome editing of rubber producing dandelion Taraxacum kok-saghyz using Agrobacterium rhizogenes without selection. Industrial Crops and Products, 89, 356–362. https://doi.org/10.1016/j.indcrop.2016.05.029

    Article  CAS  Google Scholar 

  11. Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. https://doi.org/10.1126/science.1258096

    Article  CAS  PubMed  Google Scholar 

  12. Wong, N., Liu, W., & Wang, X. (2015). WU-CRISPR: Characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biology, 16, 218. https://doi.org/10.1186/s13059-015-0784-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xie, K., Minkenberg, B., & Yang, Y. (2015). Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proceedings of the National Academy of Sciences, 112(11), 3570–3575. https://doi.org/10.1073/pnas.1420294112

    Article  CAS  Google Scholar 

  14. Jinek, M., et al. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jakounas, T., et al. (2015). Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metabolic Engineering, 28, 213–222. https://doi.org/10.1016/j.ymbn.2015.01.008

    Article  Google Scholar 

  16. Shin, S.-E., et al. (2016). CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Scientific Reports, 6(1), 27810. https://doi.org/10.1038/srep27810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma, X., et al. (2020). Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9. Nature Plants, 6(7), 773–779. https://doi.org/10.1038/s41477-020-0704-5

    Article  CAS  PubMed  Google Scholar 

  18. Velu, G., Palanichamy, V., & Rajan, A. P. (2018). Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine BT—bioorganic phase in natural food: an overview. In Roopan, S. M., & Madhumitha, G. (Eds). Cham: Springer (pp. 135–156). https://doi.org/10.1007/978-3-319-74210-6_8

  19. Bortesi, L., & Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33(1), 41–52. https://doi.org/10.1016/j.biotechadv.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  20. Makarova, K. S., et al. (2011). Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology, 9(6), 467–477. https://doi.org/10.1038/nrmicro2577

    Article  CAS  PubMed  Google Scholar 

  21. Li, X., et al. (2018). Lycopene is enriched in Tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Frontiers in Plant Science, 9, 559. https://doi.org/10.3389/fpls.2018.00559

    Article  PubMed  PubMed Central  Google Scholar 

  22. D’Ambrosio, C., Stigliani, A. L., & Giorio, G. (2018). CRISPR/Cas9 editing of carotenoid genes in tomato. Transgenic Research, 27(4), 367–378. https://doi.org/10.1007/s11248-018-0079-9

    Article  CAS  PubMed  Google Scholar 

  23. Nonaka, S., et al. (2017). Efficient increase of Γ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Scientific Reports, 7, 1–14. https://doi.org/10.1038/s41598-017-06400-y

    Article  CAS  Google Scholar 

  24. Li, R., et al. (2018). Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnology Journal, 16(2), 415–427. https://doi.org/10.1111/pbi.12781

    Article  CAS  PubMed  Google Scholar 

  25. Jiang, W. Z., et al. (2017). Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnology Journal, 15(5), 648–657. https://doi.org/10.1111/pbi.12663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, R., et al. (2007). Production of soybean isoflavone genistein in non-legume plants via genetically modified secondary metabolism pathway. Metabolic Engineering, 9(1), 1–7. https://doi.org/10.1016/j.ymben.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, P., et al. (2020). Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnology Journal, 18(6), 1384–1395. https://doi.org/10.1111/pbi.13302

    Article  CAS  PubMed  Google Scholar 

  28. Mercx, S., et al. (2017). Inactivation of the β(1,2)-xylosyltransferase and the α(1,3)-fucosyltransferase genes in Nicotiana tabacum BY-2 cells by a multiplex CRISPR/Cas9 strategy results in glycoproteins without plant-specific glycans. Frontiers in Plant Science, 8, 403. https://doi.org/10.3389/fpls.2017.00403

    Article  PubMed  PubMed Central  Google Scholar 

  29. DiCarlo, J. E., et al. (2013). Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research, 41(7), 4336–4343. https://doi.org/10.1093/nar/gkt135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Robbins, N., Caplan, T., & Cowen, L. E. (2017). Molecular evolution of antifungal drug resistance. Annual Review of Microbiology, 71(1), 753–775. https://doi.org/10.1146/annurev-micro-030117-020345

    Article  CAS  PubMed  Google Scholar 

  31. Leonard, W. R., et al. (2007). Synthesis of the antifungal β-1,3-glucan synthase inhibitor CANCIDAS (Caspofungin acetate) from Pneumocandin B0. The Journal of Organic Chemistry, 72(7), 2335–2343. https://doi.org/10.1021/jo062008i

    Article  CAS  PubMed  Google Scholar 

  32. Wei, T.-Y., et al. (2020). CRISPR/Cas9-based genome editing in the filamentous fungus Glarea lozoyensis and its application in manipulating gloF. ACS Synthetic Biology, 9(8), 1968–1977. https://doi.org/10.1021/acssynbio.9b00491

    Article  CAS  PubMed  Google Scholar 

  33. Shi, T.-Q., et al. (2019). CRISPR/Cas9-based genome editing in the filamentous fungus Fusarium fujikuroi and its application in strain engineering for gibberellic acid production. ACS Synthetic Biology, 8(2), 445–454. https://doi.org/10.1021/acssynbio.8b00478

    Article  CAS  PubMed  Google Scholar 

  34. Rojas-Sánchez, U., et al. (2020). Enhancing the yield of human erythropoietin in Aspergillus niger by introns and CRISPR-Cas9. Protein Expression and Purification, 168, 105570. https://doi.org/10.1016/j.pep.2020.105570

    Article  CAS  PubMed  Google Scholar 

  35. Li, F., et al. (2020). Construction of a new thermophilic fungus Myceliophthora thermophila platform for enzyme production using a versatile 2A peptide strategy combined with efficient CRISPR-Cas9 system. Biotechnology Letters, 42(7), 1181–1191. https://doi.org/10.1007/s10529-020-02882-5

    Article  CAS  PubMed  Google Scholar 

  36. Gu, S., et al. (2018). Metabolic engineering of the thermophilic filamentous fungus Myceliophthora thermophila to produce fumaric acid. Biotechnology for Biofuels, 11, 323. https://doi.org/10.1186/s13068-018-1319-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grijseels, S., et al. (2018). Identification of the decumbenone biosynthetic gene cluster in Penicillium decumbens and the importance for production of calbistrin. Fungal Biology and Biotechnology, 5, 18. https://doi.org/10.1186/s40694-018-0063-4

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dong, L., et al. (2020). Improving expression of thermostable trehalase from Myceliophthora sepedonium in Aspergillus niger mediated by the CRISPR/Cas9 tool and its purification, characterization. Protein Expression and Purification, 165, 105482. https://doi.org/10.1016/j.pep.2019.105482

    Article  CAS  PubMed  Google Scholar 

  39. Donohoue, P. D., Barrangou, R., & May, A. P. (2018). Advances in industrial biotechnology using CRISPR-Cas systems. Trends in Biotechnology, 36(2), 134–146. https://doi.org/10.1016/j.tibtech.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  40. Anders, C., Bargsten, K., & Jinek, M. (2016). Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Molecular Cell, 61(6), 895–902. https://doi.org/10.1016/j.molcel.2016.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Uddin, F., Rudin, C. M., & Sen, T. (2020). CRISPR gene therapy: Applications limitations, and implications for the future. Frontiers in Oncology, 10, 1387. https://doi.org/10.3389/fonc.2020.01387

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang, X.-H., et al. (2015). Off-target effects in CRISPR/Cas9-mediated genome engineering. Molecular Therapy—Nucleic Acids, 4, e264. https://doi.org/10.1038/mtna.2015.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Osorio, H., Belmar, L., & Vásquez, M. (2016). Microalgae and cyanobacteria as green molecular factories: Tools and perspectives. Algae—Organisms for Imminent Biotechnology. https://doi.org/10.5772/63006

    Article  Google Scholar 

  44. Paul, B., & Montoya, G. (2020). CRISPR-Cas12a: Functional overview and applications. Biomedical Journal, 43(1), 8–17. https://doi.org/10.1016/j.bj.2019.10.005

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding was provided by erasmus+ (Grant No. 598515-EPP-1-2018-1-IN-EPPKA2-CBHE-JP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil D. Saroj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagwat, A.C., Patil, A.M. & Saroj, S.D. CRISPR/Cas 9-Based Editing in the Production of Bioactive Molecules. Mol Biotechnol 64, 245–251 (2022). https://doi.org/10.1007/s12033-021-00418-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00418-4

Keywords

Navigation