Skip to main content

Advertisement

Log in

Delivery of Anti-IFNAR1 shRNA to Hepatic Cells Decreases IFNAR1 Gene Expression and Improves Adenoviral Transduction and Transgene Expression

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Chronic liver injury leads to advanced fibrosis, cirrhosis, and hepatocellular carcinoma. Genetical cell treatment related to the use of adenovirus (Ads) has proven to be beneficial and efficient in the recovery of hepatic diseases. Nevertheless, they are highly immunogenic and trigger an immune response where interferons type 1 (IFN-I) play a very important role. Three shRNAs against the Interferon-1 receptor (IFNAR1) were designed and cloned in pENTR/U6 plasmid and amplified in DH5α cells. Huh7 cells were transfected with these plasmids in the presence or absence of 1 × 109 viral particles/ml of adenovirus containing the green fluorescent protein gene used as a reporter. Transfection with the shRNA plasmids partially inhibited the IFNAR1 expression. This inhibition substantially decreased antiviral response, demonstrated by the decrease of IFNAR1, IFN-α, and TNF-α gene expression, and the decrease at protein levels of IFNAR1, Protein kinase RNA-activated (PKR), and phosphorylated STAT1, allowing higher adenoviral transduction and transgene expression. Interestingly it was seen shRNA inhibited macrophage activation. These results suggest that the inhibition of the IFN-I pathway could be a strategy to minimize the immune response against Adenoviral vectors allowing higher Adenovirus transduction extending the transgene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Monga, S., & Monga, S. (2011). Molecular pathology of liver diseases. Springer.

    Google Scholar 

  2. Giacca, M., & Zacchigna, S. (2012). Virus-mediated gene delivery for human gene therapy. Journal of Controlled Release, 161, 377–388.

    CAS  PubMed  Google Scholar 

  3. Ma, C. C., Wang, Z. L., Xu, T., He, Z. Y., & Wei, Y. Q. (2020). The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnology Advances, 40, 107502.

    CAS  PubMed  Google Scholar 

  4. Bangari, D., & Mittal, S. (2006). Current strategies and future directions for eluding adenoviral vector immunity. Current Gene Therapy, 6, 215–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ricobaraza, A., Gonzalez-aparicio, M., Mora-jimenez, L., Lumbreras, S., & Hernandez-alcoceba, R. (2020). High-capacity adenoviral vectors : Expanding the scope of gene therapy. International Journal of Molecular Sciences, 21, 3643.

    CAS  PubMed Central  Google Scholar 

  6. Smith, J. G., Wiethoff, C. M., Stewart, P. L., & Nemerow, G. R. (2010). Adenovirus. Current Topics in Microbiology and Immunology, 343, 195–224.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Crenshaw, B. J., Jones, L. B., Bell, C. R., Kumar, S., & Matthews, Q. L. (2019). Perspective on adenoviruses: Epidemiology, pathogenicity, and gene therapy. Biomedicines, 7, 61.

    CAS  PubMed Central  Google Scholar 

  8. Ghebremedhin, B. (2014). Human adenovirus: Viral pathogen with increasing importance. European Journal of Microbiology and Immunology, 4, 26–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ismail, A. M., Cui, T., Dommaraju, K., Singh, G., Dehghan, S., Seto, J., Shrivastava, S., Fedorova, N. B., Gupta, N., Stockwell, T. B., & Madupu, R. (2018). Genomic analysis of a large set of currently—And historically—Important human adenovirus pathogens article. Emerging Microbes & Infections, 7, 1–22.

    CAS  Google Scholar 

  10. Descamps, D., & Benihoud, K. (2009). Two key challenges for effective adenovirus-mediated liver gene therapy: Innate immune responses and hepatocyte-specific transduction. Current Gene Therapy, 9, 115–127.

    CAS  PubMed  Google Scholar 

  11. Garcia-Banuelos, J., Siller-Lopez, F., Miranda, A., Aguilar, L. K., Aguilar-Cordova, E., & Armendariz-Borunda, J. (2002). Cirrhotic rat livers with extensive fibrosis can be safely transduced with clinical-grade adenoviral vectors. Evidence of cirrhosis reversion. Gene Therapy, 9, 127–134.

    PubMed  Google Scholar 

  12. Zhu, J., Huang, X., & Yang, Y. (2007). Innate immune response to adenoviral vectors is mediated by both Toll-like receptor-dependent and -independent pathways. Journal of Virology, 81, 3170–3180.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Quinn, K. M, Zak, D. E., Costa, A., Yamamoto, A., Kastenmuller, K., Hill, B. J., Lynn, G. M., Darrah, P. A., Lindsay, R. W. B., Wang, L., Cheng, C., Nicosia, A., Folgori, A., Colloca, S., Cortese, R., Gostick, E., Price, D. A., Gall, J. G. D., Roederer, M., … Seder, R. A. (2015). Antigen expression determines adenoviral vaccine potency independent of IFN and STING signaling. The Journal of Clinical Investigation, 125, 1129–1146.

    PubMed  PubMed Central  Google Scholar 

  14. de Weerd, N. A., Vivian, J. P., Nguyen, T. K., Mangan, N. E., Gould, J. A., Braniff, S. J., Zaker-Tabrizi, L., Fung, K. Y., Forster, S. C., Beddoe, T., Reid H. H., Rossjohn, J., & Hertzog, P. J. (2013). Structural basis of a unique interferon-β signaling axis mediated via the receptor IFNAR1. Nature Immunology, 14, 901–907.

    PubMed  Google Scholar 

  15. Snell, L. M., & Brooks, D. G. (2015). New insights into type I interferon and the immunopathogenesis of persistent viral infections. Current Opinion in Immunology, 34, 91–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, A. J., & Ashkar, A. A. (2018). The dual nature of type I and type II interferons. Frontiers in Immunology, 9, 1–10.

    Google Scholar 

  17. Atasheva, S., & Shayakhmetov, D. M. (2016). Innate immune response to adenovirus vector administration in vivo. In Adenoviral vectors for gene therapy: Second Edition. Elsevier Inc. https://doi.org/10.1016/B978-0-12-800276-6.00014-0.

  18. Chomczynski, P., & Sacchi, N. (2006). The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: Twenty-something years on. Nature Protocols, 1, 581–585.

    CAS  PubMed  Google Scholar 

  19. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    CAS  PubMed  Google Scholar 

  20. GTCT (FMS19). https://a873679.fmphost.com/fmi/webd/GTCT.

  21. Fausther-Bovendo, H., & Kobinger, G. P. (2015). Pre-existing immunity against Ad vectors. Human Vaccines & Immunotherapeutics, 10, 2875–2884.

    Google Scholar 

  22. Gentile, C. M., Borovjagin, A. V., Richter, J. R., Jani, A. H., Wu, H., Zinn, K. R., & Warram, J. M. (2019). Genetic strategy to decrease complement activation with adenoviral therapies. PLoS ONE, 14, 1–15.

    Google Scholar 

  23. Toth, K., Lee, S. R., Ying, B., Spencer, J. F., Tollefson, A. E., Sagartz, J. E., Kong, I. K., Wang, Z., & Wold, W. S. (2015). STAT2 knockout syrian hamsters support enhanced replication and pathogenicity of human adenovirus, revealing an important role of type I interferon response in viral control. PLOS Pathogens, 11, e1005084.

    PubMed  PubMed Central  Google Scholar 

  24. Anghelina, D., Lam, E., & Falck-Pedersen, E. (2016). Diminished antiviral innate response to Adenovirus vectors in cGAS/STING deficient mice minimally impacts adaptive immunity. Journal of Virology, 90, 5915–5927.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Coccia, E. M., & Battistini, A. (2015). Early IFN type I response: Learning from microbial evasion strategies. Seminars in Immunology. https://doi.org/10.1016/j.smim.2015.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ivashkiv, L. B., & Donlin, L. T. (2014). Regulation of type I interferon responses. Nature Reviews Immunology, 14, 36–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Vupputuri, S., Tayebi, L., Hikkaduwa Koralege, R. S., Nigatu, A., Mozafari, M., Mishra, A., Liu, L., & Ramsey, J. D. (2020). Polyethylene glycol–modified DOTAP:Cholesterol/adenovirus hybrid vectors have improved transduction efficiency and reduced immunogenicity. Journal of Nanoparticle Research, 23, 1–14.

    Google Scholar 

  28. Jönsson, F., & Kreppel, F. (2017). Barriers to systemic application of virus-based vectors in gene therapy: Lessons from adenovirus type 5. Virus Genes, 53, 692–699.

    PubMed  Google Scholar 

  29. Roberts, D. M., Nanda, A., Havenga, M. J., Abbink, P., Lynch, D. M., Ewald, B. A., Liu, J., Thorner, A. R., Swanson, P. E., Gorgone, D. A., Lifton, M. A., Lemckert, A. A., Holterman, L., Chen, B., Dilraj, A., Carville, A., Mansfield, K. G., Goudsmit, J., & Barouch, D. H. (2006). Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature, 441, 239–243.

    CAS  PubMed  Google Scholar 

  30. Holterman, L., Vogels, R., van der Vlugt, R., Sieuwerts, M., Grimbergen, J., Kaspers, J., Geelen, E., van der Helm, E., Lemckert, A., Gillissen, G., Verhaagh, S., Custers, J., Zuijdgeest, D., Berkhout, B., Bakker, M., Quax, P., Goudsmit, J., & Havenga, M. (2004). Novel replication-incompetent vector derived from adenovirus type 11 (Ad11) for vaccination and gene therapy: Low seroprevalence and non-cross-reactivity with Ad5. Journal of Virology, 78, 13207–13215.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ye, X., Robinson, M. B., Pabin, C., Batshaw, M. L., & Wilson, J. M. (2000). Transient depletion of CD4 lymphocyte improves efficacy of repeated administration of recombinant adenovirus in the ornithine transcarbamylase deficient sparse fur mouse. Gene Therapy, 7, 1761.

    CAS  PubMed  Google Scholar 

  32. Chirmule, N., Raper, S. E., Burkly, L., Thomas, D., Tazelaar, J., Hughes, J. V., & Wilson, J. M. (2000). Readministration of adenovirus vector in nonhuman primate lungs by blockade of CD40-CD40 ligand interactions. Journal of Virology, 74, 3345–3352.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith, T. A., White, B. D., Gardner, J. M., Kaleko, M., & McClelland, A. (1996). Transient immunosuppression permits successful repetitive intravenous administration of an adenovirus vector. Gene Therapy, 3, 496–502.

    CAS  PubMed  Google Scholar 

  34. Sobrevilla-Navarro, A. A., Sandoval-Rodríguez, A., García-Bañuelos, J. J., Armendariz-Borunda, J., & Salazar-Montes, A. M. (2018). Interferon-α silencing by small interference RNA increases adenovirus transduction and transgene expression in Huh7 cells. Molecular Biotechnology, 60, 251–258.

    CAS  PubMed  Google Scholar 

  35. López de Padilla, C. M., & Niewold, T. B. (2016). The type I interferons: Basic concepts and clinical relevance in immune-mediated inflammatory diseases. Gene, 576, 14–21.

    PubMed  Google Scholar 

  36. Hoffmann, H.-H., Schneider, W. M., & Rice, C. M. (2015). Interferons and viruses: An evolutionary arms race of molecular interactions. Trends in Immunology, 36, 124–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Grimm, D., & Kay, M. (2006). Therapeutic short hairpin RNA expression in the liver: Viral targets and vectors. Gene Therapy, 13, 563–575.

    CAS  PubMed  Google Scholar 

  38. Tu, B., Ma, T. T., Peng, X. Q., Wang, Q., Yang, H., & Huang, X. L. (2014). Targeting of COX-2 expression by recombinant adenovirus shRNA attenuates the malignant biological behavior of breast cancer cells. Asian Pacific Journal of Cancer Prevention, 15, 8829–8836.

    PubMed  Google Scholar 

  39. Kimura, A., Naka, T., Muta, T., Takeuchi, O., Akira, S., Kawase, I., & Kishimoto, T. (2005). Suppressor of cytokine signaling-1 selectively inhibits LPS-induced IL-6 production by regulating JAK-STAT. Proceedings of the National Academy of Sciences A, 102, 17089–17094.

    CAS  Google Scholar 

  40. Sakurai, H., Tashiro, K., Kawabata, K., Yamaguchi, T., Sakurai, F., Nakagawa, S., & Mizuguchi, H. (2008). Adenoviral expression of suppressor of cytokine signaling-1. The Journal of Immunology, 180, 4931. https://doi.org/10.4049/jimmunol.180.7.4931

    Article  CAS  PubMed  Google Scholar 

  41. Lee, J., Tam, H., Adler, L., Ilstad-Minnihan, A., Macaubas, C., & Mellins, E. D. (2017). The MHC class II antigen presentation pathway in human monocytes differs by subset and is regulated by cytokines. PLoS ONE, 12, e0183594.

    PubMed  PubMed Central  Google Scholar 

  42. Ito, T., Amakawa, R., Inaba, M., Ikehara, S., Inaba, K., & Fukuhara, S. (2001). Differential regulation of human blood dendritic cell subsets by IFNs. The Journal of Immunology, 166, 2961–2969.

    CAS  PubMed  Google Scholar 

  43. Hahm, B., Trifilo, M. J., Zuniga, E. I., & Oldstone, M. B. A. (2005). Viruses evade the immune system through type I interferon-mediated STAT2-dependent, but STAT1-independent, signaling. Immunity, 22, 247–257.

    CAS  PubMed  Google Scholar 

  44. Kreppel, F., & Hagedorn, C. (2021). Capsid and genome modification strategies to reduce the immunogenicity of adenoviral vectors. International Journal of Molecular Sciences, 22, 2417.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Siller-López, F., Sandoval, A., Salgado, S., Salazar, A., Bueno, M., Garcia, J., Vera, J., Gálvez, J., Hernández, I., Ramos, M., & Aguilar-Cordova, E. (2004). Treatment with human metalloproteinase-8 gene delivery ameliorates experimental rat liver cirrhosis. Gastroenterology, 126(4), 1122–1133.

    PubMed  Google Scholar 

Download references

Funding

Funding was provided by Universidad de Guadalajara (Grant No. 248576 PROGRAMA DE APOYO A LA MEJORA DE LAS CONDICIONES DE PRODUCCION DE LOS MIEMBROS DEL SNI (PROSNI) Y SNCA 2019)

Author information

Authors and Affiliations

Authors

Contributions

JG-R: He worked in Experimental phase performing. Cell culture, cloning and PCR. AC-V: Performed cell culture and flow cytometry. GG-S: Performed the flow cytometry analysis. AS-N: Performed the western-blot assays. BB-R: Contributed to the discussion of the results. LH-O: He designed the shRNA molecules and the cloning. CG-D: Analysis of the results. LG-L: Contributed to the discussion of the results. JA-B: Revision of the manuscript. AS-M: Administration of the project and manuscript writing.

Corresponding author

Correspondence to A. Salazar-Montes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero-Rodríguez, J., Cárdenas-Vargas, A., Gutierrez-Silerio, G. et al. Delivery of Anti-IFNAR1 shRNA to Hepatic Cells Decreases IFNAR1 Gene Expression and Improves Adenoviral Transduction and Transgene Expression. Mol Biotechnol 64, 413–423 (2022). https://doi.org/10.1007/s12033-021-00408-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00408-6

Keywords