Skip to main content

Advertisement

Log in

Silencing of Long Non-coding RNA LINC01106 Represses Malignant Behaviors of Gastric Cancer Cells by Targeting miR-34a-5p/MYCN Axis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Long non-coding RNA LINC01106 is an lncRNA aberrantly expressed in gastric cancer (GC). However, the accurate function remains unclear. The objective of this investigation is to explore detailed regulatory mechanism of lncRNA LINC01106 in GC. The expression of lncRNA LINC01106, MYCN, and miR-34a-5p was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was examined using MTT assay. Migratory and invasive abilities of GC cells were evaluated by transwell assay. The targeting relation among lncRNA LINC01106, MYCN, and miR-34a-5p was tested by dual-luciferase reporter (DLR) assay. Relative protein expression of MYCN was assessed via western blot. Besides, a xenograft mouse model was established to assess the role of LINC01106 in GC in vivo. LncRNA LINC01106 and MYCN expression were boosted and miR-34a-5p expression was reduced in GC cells and tissues compared to their controls. Functionally, decreased lncRNA LINC01106 or increased miR-34a-5p restrained GC cells in viability, invasion, and migration in vitro. LINC01106 down-regulation suppressed tumor growth of mice in vivo. In terms of mechanism, lncRNA LINC01106 directly targeted miR-34a-5p and was inversely correlated with miR-34a-5p. MYCN was targeted by miR-34a-5p and was inversely correlated with miR-34a-5p. There was a positive correlation between LINC01106 and MYCN. LINC01106 knockdown led to the suppression of cell invasion, migration, and viability, whereas these effects caused by LINC01106 knockdown were reversed by miR-34a-5p down-regulation or MYCN up-regulation in GC cells. Silencing of lncRNA LINC01106 attenuated cell viability, invasion, and migration by sponging miR-34a-5p to target MYCN in GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Crew, K. D., & Neugut, A. I. (2006). Epidemiology of gastric cancer. World Journal of Gastroenterology, 12(3), 354–362. https://doi.org/10.3748/wjg.v12.i3.354

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics. CA: A Cancer Journal for Clinicians, 69(1), 7–34. https://doi.org/10.3322/caac.21551

    Article  Google Scholar 

  3. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  4. Sitarz, R., Skierucha, M., Mielko, J., Offerhaus, G. J. A., Maciejewski, R., & Polkowski, W. P. (2018). Gastric cancer: Epidemiology, prevention, classification, and treatment. Cancer Manag Res, 10, 239–248. https://doi.org/10.2147/CMAR.S149619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Cervantes, A., Roda, D., Tarazona, N., Rosello, S., & Perez-Fidalgo, J. A. (2013). Current questions for the treatment of advanced gastric cancer. Cancer Treatment Reviews, 39(1), 60–67. https://doi.org/10.1016/j.ctrv.2012.09.007

    Article  PubMed  CAS  Google Scholar 

  6. Wang, X., Arai, S., Song, X., Reichart, D., Du, K., Pascual, G., Tempst, P., Rosenfeld, M. G., Glass, C. K., & Kurokawa, R. (2008). Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature, 454(7200), 126–130. https://doi.org/10.1038/nature06992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Fatica, A., & Bozzoni, I. (2014). Long non-coding RNAs: New players in cell differentiation and development. Nature Reviews Genetics, 15(1), 7–21. https://doi.org/10.1038/nrg3606

    Article  PubMed  CAS  Google Scholar 

  8. Huang, Y., Zhang, J., Hou, L., Wang, G., Liu, H., Zhang, R., Chen, X., & Zhu, J. (2017). LncRNA AK023391 promotes tumorigenesis and invasion of gastric cancer through activation of the PI3K/Akt signaling pathway. Journal of Experimental & Clinical Cancer Research, 36(1), 194. https://doi.org/10.1186/s13046-017-0666-2

    Article  CAS  Google Scholar 

  9. Luo, M., & Liang, C. (2020). LncRNA LINC00483 promotes gastric cancer development through regulating MAPK1 expression by sponging miR-490-3p. Biological Research, 53(1), 14. https://doi.org/10.1186/s40659-020-00283-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Pan, H., Ding, Y., Jiang, Y., Wang, X., Rao, J., Zhang, X., Yu, H., Hou, Q., & Li, T. (2021). LncRNA LIFR-AS1 promotes proliferation and invasion of gastric cancer cell via miR-29a-3p/COL1A2 axis. Cancer Cell International, 21(1), 7. https://doi.org/10.1186/s12935-020-01644-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Han, W., Zhang, Z., He, B., Xu, Y., Zhang, J., & Cao, W. (2017). Integrated analysis of long non-coding RNAs in human gastric cancer: An in silico study. PLoS ONE, 12(8), e0183517. https://doi.org/10.1371/journal.pone.0183517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mao, R., Wang, Z., Zhang, Y., Chen, Y., Liu, Q., Zhang, T., & Liu, Y. (2020). Development and validation of a novel prognostic signature in gastric adenocarcinoma. Aging (Albany, NY), 12(21), 22233–22252. https://doi.org/10.18632/aging.104161

    Article  CAS  Google Scholar 

  13. Guo, L. L., Song, C. H., Wang, P., Dai, L. P., Zhang, J. Y., & Wang, K. J. (2015). Competing endogenous RNA networks and gastric cancer. World Journal of Gastroenterology, 21(41), 11680–11687. https://doi.org/10.3748/wjg.v21.i41.11680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bhaskaran, M., & Mohan, M. (2014). MicroRNAs: History, biogenesis, and their evolving role in animal development and disease. Veterinary Pathology, 51(4), 759–774. https://doi.org/10.1177/0300985813502820

    Article  PubMed  CAS  Google Scholar 

  15. Meng, H., Li, Y. Y., Han, D., & Zhang, C. Y. (2019). MiRNA-93-5p promotes the biological progression of gastric cancer cells via Hippo signaling pathway. European Review for Medical and Pharmacological Sciences, 23(11), 4763–4769.

    PubMed  CAS  Google Scholar 

  16. Wang, C., Huang, Y., Zhang, J., & Fang, Y. (2020). MiRNA-339-5p suppresses the malignant development of gastric cancer via targeting ALKBH1. Experimental and Molecular Pathology. https://doi.org/10.1016/j.yexmp.2020.104449

    Article  PubMed  Google Scholar 

  17. Hu, S., Zheng, Q., Wu, H., Wang, C., Liu, T., & Zhou, W. (2017). miR-532 promoted gastric cancer migration and invasion by targeting NKD1. Life Sciences, 177, 15–19. https://doi.org/10.1016/j.lfs.2017.03.019

    Article  PubMed  CAS  Google Scholar 

  18. Hu, Y., Pu, Q., Cui, B., & Lin, J. (2015). MicroRNA-34a inhibits tumor invasion and metastasis in gastric cancer by targeting Tgif2. International Journal of Clinical and Experimental Pathology, 8(8), 8921–8928.

    PubMed  PubMed Central  Google Scholar 

  19. Wei, B., Huang, Q. Y., Huang, S. R., Mai, W., & Zhong, X. G. (2015). MicroRNA34a attenuates the proliferation, invasion and metastasis of gastric cancer cells via downregulation of MET. Molecular Medicine Reports, 12(4), 5255–5261. https://doi.org/10.3892/mmr.2015.4110

    Article  PubMed  CAS  Google Scholar 

  20. Zheng, F., Li, J., Ma, C., Tang, X., Tang, Q., Wu, J., Chai, X., Xie, J., Yang, X. B., & Hann, S. S. (2020). Novel regulation of miR-34a-5p and HOTAIR by the combination of berberine and gefitinib leading to inhibition of EMT in human lung cancer. Journal of Cellular and Molecular Medicine, 24(10), 5578–5592. https://doi.org/10.1111/jcmm.15214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ma, Y., Fan, B., Ren, Z., Liu, B., & Wang, Y. (2019). Long noncoding RNA DANCR contributes to docetaxel resistance in prostate cancer through targeting the miR-34a-5p/JAG1 pathway. Oncotargets and Therapy, 12, 5485–5497. https://doi.org/10.2147/OTT.S197009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Sun, Z., Zhang, B., & Cui, T. (2018). Long non-coding RNA XIST exerts oncogenic functions in pancreatic cancer via miR-34a-5p. Oncology Reports, 39(4), 1591–1600. https://doi.org/10.3892/or.2018.6245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zuo, Y., Zheng, W., Liu, J., Tang, Q., Wang, S. S., & Yang, X. S. (2020). MiR-34a-5p/PD-L1 axis regulates cisplatin chemoresistance of ovarian cancer cells. Neoplasma, 67(1), 93–101. https://doi.org/10.4149/neo_2019_190202N106

    Article  PubMed  CAS  Google Scholar 

  25. Xu, X. P., Peng, X. Q., Yin, X. M., Liu, Y., & Shi, Z. Y. (2020). miR-34a-5p suppresses the invasion and metastasis of liver cancer by targeting the transcription factor YY1 to mediate MYCT1 upregulation. Acta Histochemica, 122(6), 151576. https://doi.org/10.1016/j.acthis.2020.151576

    Article  PubMed  CAS  Google Scholar 

  26. He, J., Zhao, H., Liu, X., Wang, D., Wang, Y., Ai, Y., & Yang, J. (2020). Sevoflurane suppresses cell viability and invasion and promotes cell apoptosis in colon cancer by modulating exosomemediated circHMGCS1 via the miR34a5p/SGPP1 axis. Oncology Reports, 44(6), 2429–2442. https://doi.org/10.3892/or.2020.7783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Meyer, N., & Penn, L. Z. (2008). Reflecting on 25 years with MYC. Nature Reviews Cancer, 8(12), 976–990. https://doi.org/10.1038/nrc2231

    Article  PubMed  CAS  Google Scholar 

  28. Liu, K., Wang, S., Liu, Y., Gu, J., Gu, S., Xu, Z., Zhang, R., Wang, Z., Ma, H., Chen, Y., & Ji, L. (2016). Overexpression of MYCN promotes proliferation of non-small cell lung cancer. Tumour Biology, 37(9), 12855–12866. https://doi.org/10.1007/s13277-016-5236-2

    Article  PubMed  CAS  Google Scholar 

  29. Yasukawa, K., Liew, L. C., Hagiwara, K., Hironaka-Mitsuhashi, A., Qin, X. Y., Furutani, Y., Tanaka, Y., Nakagama, H., Kojima, S., Kato, T., Ochiya, T., & Gailhouste, L. (2020). MicroRNA-493-5p-mediated repression of the MYCN oncogene inhibits hepatic cancer cell growth and invasion. Cancer Science, 111(3), 869–880. https://doi.org/10.1111/cas.14292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Liu, T., Liu, Y., Wei, C., Yang, Z., Chang, W., & Zhang, X. (2020). LncRNA HULC promotes the progression of gastric cancer by regulating miR-9-5p/MYH9 axis. Biomedicine & Pharmacotherapy, 121, 109607. https://doi.org/10.1016/j.biopha.2019.109607

    Article  CAS  Google Scholar 

  31. Wu, F., Gao, H., Liu, K., Gao, B., Ren, H., Li, Z., & Liu, F. (2019). The lncRNA ZEB2-AS1 is upregulated in gastric cancer and affects cell proliferation and invasion via miR-143-5p/HIF-1alpha axis. Oncotargets and Therapy, 12, 657–667. https://doi.org/10.2147/OTT.S175521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Smyth, E. C., Nilsson, M., Grabsch, H. I., van Grieken, N. C., & Lordick, F. (2020). Gastric cancer. Lancet, 396(10251), 635–648. https://doi.org/10.1016/S0140-6736(20)31288-5

    Article  PubMed  CAS  Google Scholar 

  33. Gu, Y., Huang, Y., Sun, Y., Liang, X., Kong, L., Liu, Z., & Wang, L. (2020). Long non-coding RNA LINC01106 regulates colorectal cancer cell proliferation and apoptosis through the STAT3 pathway. Nan Fang Yi Ke Da Xue Xue Bao, 40(9), 1259–1264. https://doi.org/10.12122/j.issn.1673-4254.2020.09.06

    Article  PubMed  Google Scholar 

  34. Gao, X., Yu, L., Zhang, J., & Xue, P. (2020). Silencing of long non-coding RNA LINC01106 suppresses the proliferation, migration and invasion of endometrial cancer cells through regulating the miR-449a/MET axis. Oncotargets and Therapy, 13, 9643–9655. https://doi.org/10.2147/OTT.S264642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Guo, K., Gong, W., Wang, Q., Gu, G., Zheng, T., Li, Y., Li, W., Fang, M., Xie, H., Yue, C., Yang, J., & Zhu, Z. (2020). LINC01106 drives colorectal cancer growth and stemness through a positive feedback loop to regulate the Gli family factors. Cell Death & Disease, 11(10), 869. https://doi.org/10.1038/s41419-020-03026-3

    Article  CAS  Google Scholar 

  36. Meng, L., Xing, Z., Guo, Z., & Liu, Z. (2020). LINC01106 post-transcriptionally regulates ELK3 and HOXD8 to promote bladder cancer progression. Cell Death & Disease, 11(12), 1063. https://doi.org/10.1038/s41419-020-03236-9

    Article  CAS  Google Scholar 

  37. Paraskevopoulou, M. D., & Hatzigeorgiou, A. G. (2016). Analyzing MiRNA-LncRNA interactions. Methods in Molecular Biology, 1402, 271–286. https://doi.org/10.1007/978-1-4939-3378-5_21

    Article  PubMed  CAS  Google Scholar 

  38. Jiang, X., Guo, S., Zhang, Y., Zhao, Y., Li, X., Jia, Y., Xu, Y., & Ma, B. (2020). LncRNA NEAT1 promotes docetaxel resistance in prostate cancer by regulating ACSL4 via sponging miR-34a-5p and miR-204-5p. Cellular Signalling. https://doi.org/10.1016/j.cellsig.2019.109422

    Article  PubMed  Google Scholar 

  39. Li, S., Zhu, K., Liu, L., Gu, J., Niu, H., & Guo, J. (2020). lncARSR sponges miR-34a-5p to promote colorectal cancer invasion and metastasis via hexokinase-1-mediated glycolysis. Cancer Science, 111(10), 3938–3952. https://doi.org/10.1111/cas.14617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ma, E., Wang, Q., Li, J., Zhang, X., Guo, Z., & Yang, X. (2020). LINC01006 facilitates cell proliferation, migration and invasion in prostate cancer through targeting miR-34a-5p to up-regulate DAAM1. Cancer Cell International, 20, 515. https://doi.org/10.1186/s12935-020-01577-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bracken, C. P., Scott, H. S., & Goodall, G. J. (2016). A network-biology perspective of microRNA function and dysfunction in cancer. Nature Reviews Genetics, 17(12), 719–732. https://doi.org/10.1038/nrg.2016.134

    Article  PubMed  CAS  Google Scholar 

  42. Song, C., Lu, P., Sun, G., Yang, L., & Wang, Z. (2017). miR-34a sensitizes lung cancer cells to cisplatin via p53/miR-34a/MYCN axis. Biochemical and Biophysical Research Communications, 482(1), 22–27. https://doi.org/10.1016/j.bbrc.2016.11.037

    Article  PubMed  CAS  Google Scholar 

  43. Muller, S., Raulefs, S., Bruns, P., Afonso-Grunz, F., Plotner, A., Thermann, R., Jager, C., Schlitter, A. M., Kong, B., Regel, I., Roth, W. K., Rotter, B., Hoffmeier, K., Kahl, G., Koch, I., Theis, F. J., Kleeff, J., Winter, P., & Michalski, C. W. (2015). Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer. Molecular Cancer, 14, 94. https://doi.org/10.1186/s12943-015-0358-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Li, S., Chen, X., Liu, X., Yu, Y., Pan, H., Haak, R., Schmidt, J., Ziebolz, D., & Schmalz, G. (2017). Complex integrated analysis of lncRNAs-miRNAs-mRNAs in oral squamous cell carcinoma. Oral Oncology, 73, 1–9. https://doi.org/10.1016/j.oraloncology.2017.07.026

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengbo Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Li, Q., Yang, Y. et al. Silencing of Long Non-coding RNA LINC01106 Represses Malignant Behaviors of Gastric Cancer Cells by Targeting miR-34a-5p/MYCN Axis. Mol Biotechnol 64, 144–155 (2022). https://doi.org/10.1007/s12033-021-00402-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00402-y

Keywords

Navigation