Skip to main content
Log in

Proteomic Analysis and Promoter Modification of Bacillus thuringiensis to Improve Insecticidal Vip3A Protein Production

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Insecticidal protein Vip3A secreted from B. thuringiensis is a potential biocontrol agent for control of lepidopteran pests. Under laboratory conditions, high albeit variable Vip3A production from the local isolate Bt294 was only obtained from a much enriched TB culture medium. Proteomic analysis and strain improvement were therefore performed to improve Vip3A production. Studies indicated that the buffer capacity, carbon source, and nitrogen source are critical to efficiently produce Vip3A. Medium with lower amounts of peptone and yeast extract (compared to TB), with an additional carbon source and phosphate buffer (LB*G medium) was found to give reasonable yields of Vip3A. Proteomic analysis revealed higher expression of proteins involved in glutamate and histidine biosynthesis in cells cultured in TB compared to LB about 58 and 33 times, respectively. Experiments confirmed that glutamate supplementation could increase Vip3A production. In addition, promoter substitution with that of cry3A increased Vip3A yields by about 20–30%. Overall, very high yields of Vip3A could be obtained by culturing Bt294 (Pcry3A-vip3Aa64) in LB*G medium with glutamate supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sanahuja, G., et al. (2011). Bacillus thuringiensis: A century of research, development and commercial applications. Plant Biotechnology Journal, 9(3), 283–300.

    Article  CAS  Google Scholar 

  2. Chakroun, M., et al. (2016). Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria. Microbiology and Molecular Biology Reviews, 80(2), 329–350.

    Article  CAS  Google Scholar 

  3. Estruch, J. J., et al. (1996). Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proceedings of the National Academy of Sciences United States of America, 93(11), 5389–5394.

    Article  CAS  Google Scholar 

  4. Zhu, C., et al. (2006). Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua. Letters in Applied Microbiology, 42(2), 109–114.

    Article  CAS  Google Scholar 

  5. Bergamasco, V. B., et al. (2013). Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp (Lepidoptera). Journal of Invertebrate Pathology, 112(2), 152–158.

    Article  CAS  Google Scholar 

  6. Lee, M. K., et al. (2003). The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab delta-endotoxin. Applied and Environment Microbiology, 69(8), 4648–4657.

    Article  CAS  Google Scholar 

  7. Jackson, R. E., et al. (2007). Cross-resistance responses of CrylAc-selected Heliothis virescens (Lepidoptera: Noctuidae) to the Bacillus thuringiensis protein vip3A. Journal of Economic Entomology, 100(1), 180–186.

    Article  CAS  Google Scholar 

  8. Kurtz, R. W., McCaffery, A., & O’Reilly, D. (2007). Insect resistance management for Syngenta’s VipCot transgenic cotton. Journal of Invertebrate Pathology, 95(3), 227–230.

    Article  Google Scholar 

  9. Adamczyk, J. J., Jr., & Mahaffey, J. S. (2008). Efficacy of Vip3A and Cry1Ab transgenic traits in cotton against various lepidopteran pests. Florida Entomologist, 91(4), 570–575.

    Google Scholar 

  10. Burkness, E. C., et al. (2010). Novel Vip3A Bacillus thuringiensis (Bt) maize approaches high-dose efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) under field conditions: Implications for resistance management. GM Crops, 1(5), 337–343.

    Article  Google Scholar 

  11. Soonsanga, S., et al. (2019). Tyrosine-776 of Vip3Aa64 from Bacillus thuringiensis is Important for retained larvicidal activity during high-temperature storage. Current Microbiology, 76(1), 15–21.

    Article  CAS  Google Scholar 

  12. Palma, L., et al. (2017). The Vip3Ag4 insecticidal protoxin from Bacillus thuringiensis adopts a tetrameric configuration that is maintained on proteolysis. Toxins (Basel), 9(5), 165.

    Article  Google Scholar 

  13. Núñez-Ramírez, R., et al. (2020). Molecular architecture and activation of the insecticidal protein Vip3Aa from Bacillus thuringiensis. Nature Communications, 11(1), 3974.

    Article  Google Scholar 

  14. Liu, J. G., et al. (2011). Specific binding of activated Vip3Aa10 to Helicoverpa armigera brush border membrane vesicles results in pore formation. Journal of Invertebrate Pathology, 108(2), 92–97.

    Article  CAS  Google Scholar 

  15. Kunthic, T., et al. (2017). pH regulates pore formation of a protease activated Vip3Aa from Bacillus thuringiensis. Biochimica et Biophysica Acta, Biomembranes, 1859(11), 2234–2241.

    Article  CAS  Google Scholar 

  16. Jiang, K., et al. (2016). Vip3Aa induces apoptosis in cultured Spodoptera frugiperda (Sf9) cells. Toxicon, 120, 49–56.

    Article  CAS  Google Scholar 

  17. Soonsanga, S., Luxananil, P., & Promdonkoy, B. (2020). Modulation of Cas9 level for efficient CRISPR-Cas9-mediated chromosomal and plasmid gene deletion in Bacillus thuringiensis. Biotechnology Letters, 42(4), 625–632.

    Article  CAS  Google Scholar 

  18. Jiang, W., et al. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31(3), 233–239.

    Article  CAS  Google Scholar 

  19. Promchai, R., et al. (2016). A novel salt-inducible vector for efficient expression and secretion of heterologous proteins in Bacillus subtilis. Journal of Biotechnology, 222, 86–93.

    Article  CAS  Google Scholar 

  20. Lertcanawanichakul, M., & Wiwat, C. (2000). Improved shuttle vector for expression of chitinase gene in Bacillus thuringiensis. Letters in Applied Microbiology, 31(2), 123–128.

    Article  CAS  Google Scholar 

  21. Lowry, O. H., et al. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    Article  CAS  Google Scholar 

  22. Johansson, C., et al. (2006). Differential expression analysis of Escherichia coli proteins using a novel software for relative quantitation of LC-MS/MS data. Proteomics, 6(16), 4475–4485.

    Article  CAS  Google Scholar 

  23. Thorsell, A., et al. (2007). Evaluation of sample fractionation using micro-scale liquid-phase isoelectric focusing on mass spectrometric identification and quantitation of proteins in a SILAC experiment. Rapid Communications in Mass Spectrometry, 21(5), 771–778.

    Article  CAS  Google Scholar 

  24. Howe, E. A., et al. (2011). RNA-Seq analysis in MeV. Bioinformatics, 27(22), 3209–3210.

    Article  CAS  Google Scholar 

  25. Mi, H., et al. (2019). PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Research, 47(D1), D419–D426.

    Article  CAS  Google Scholar 

  26. Sezonov, G., Joseleau-Petit, D., & D’Ari, R. (2007). Escherichia coli physiology in Luria-Bertani broth. Journal of Bacteriology, 189(23), 8746–8749.

    Article  CAS  Google Scholar 

  27. Wang, Z., et al. (2021). Nutrient conditions determine the localization of Bacillus thuringiensis Vip3Aa protein in the mother cell compartment. Microbial Biotechnology, 14(2), 551–560.

    Article  CAS  Google Scholar 

  28. Commichau, F. M., Forchhammer, K., & Stulke, J. (2006). Regulatory links between carbon and nitrogen metabolism. Current Opinion in Microbiology, 9(2), 167–172.

    Article  CAS  Google Scholar 

  29. Winkler, M. E., & Ramos-Montanez, S. (2009). Biosynthesis of histidine. EcoSal Plus. https://doi.org/10.1128/ecosalplus.3.6.1.9

    Article  PubMed  PubMed Central  Google Scholar 

  30. Agaisse, H., & Lereclus, D. (1995). How does Bacillus thuringiensis produce so much insecticidal crystal protein? Journal of Bacteriology, 177(21), 6027–6032.

    Article  CAS  Google Scholar 

  31. Song, R., et al. (2008). Carboxy-terminal half of Cry1C can help vegetative insecticidal protein to form inclusion bodies in the mother cell of Bacillus thuringiensis. Applied Microbiology and Biotechnology, 80(4), 647–654.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Cluster and Program Management, National Science and Technology Development Agency, Thailand, under Grant P-19-52139

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumarin Soonsanga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soonsanga, S., Rungrod, A., Phaonakrop, N. et al. Proteomic Analysis and Promoter Modification of Bacillus thuringiensis to Improve Insecticidal Vip3A Protein Production. Mol Biotechnol 64, 100–107 (2022). https://doi.org/10.1007/s12033-021-00401-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00401-z

Keywords

Navigation