Skip to main content
Log in

Characterization of a Novel Shewanella algae Arginine Decarboxylase Expressed in Escherichia coli

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Arginine decarboxylase (ADC) catalyzes the decarboxylation of arginine to form agmatine, an important physiological and pharmacological amine, and attracts attention to the enzymatic production of agmatine. In this study, we for the first time overexpressed and characterized the marine Shewanella algae ADC (SaADC) in Escherichia coli. The recombinant SaADC showed the maximum activity at pH 7.5 and 40 °C. The SaADC displayed previously unreported substrate inhibition when the substrate concentration was higher than 50 mM, which was the upper limit of testing condition in other reports. In the range of 1–80 mM l-arginine, the SaADC showed the Km, kcat, Ki, and kcat/Km values of 72.99 ± 6.45 mM, 42.88 ± 2.63 s−1, 20.56 ± 2.18 mM, and 0.59 s/mM, respectively, which were much higher than the Km (14.55 ± 1.45 mM) and kcat (12.62 ± 0.68 s−1) value obtained by assaying at 1–50 mM l-arginine without considering substrate inhibition. Both the kcat values of SaADC with and without substrate inhibition are the highest ones to the best of our knowledge. This provides a reference for the study of substrate inhibition of ADCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu, W., Gao, L., Li, T., Shao, A., & Zhang, J. (2018). Neuroprotective role of agmatine in neurological diseases. Current Neuropharmacology, 16, 1296–1305.

    Article  CAS  Google Scholar 

  2. Schafer, U., Raasch, W., Qadri, F., Chun, J., & Dominiak, P. (1999). Effects of agmatine on the cardiovascular system of spontaneously hypertensive rats. Annals of the New York Academy of Sciences, 881, 97–101.

    Article  CAS  Google Scholar 

  3. Gong, Z. H., Li, Y. F., Zhao, N., Yang, H. J., Su, R. B., Luo, Z. P., & Li, J. (2006). Anxiolytic effect of agmatine in rats and mice. European Journal of Pharmacology, 550, 112–116.

    Article  CAS  Google Scholar 

  4. Neis, V. B., Manosso, L. M., Moretti, M., Freitas, A. E., Daufenbach, J., & Rodrigues, A. L. (2014). Depressive-like behavior induced by tumor necrosis factor-alpha is abolished by agmatine administration. Behavioural Brain Research, 261, 336–344.

    Article  CAS  Google Scholar 

  5. El-Agamy, D. S., Makled, M. N., & Gamil, N. M. (2014). Protective effects of agmatine against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure in mice. Inflammopharmacology, 22, 187–194.

    Article  CAS  Google Scholar 

  6. Bornscheuer, U. T., Huisman, G. W., Kazlauskas, R. J., Lutz, S., Moore, J. C., & Robins, K. (2012). Engineering the third wave of biocatalysis. Nature, 485, 185–194.

    Article  CAS  Google Scholar 

  7. Wang, X., Ying, W., Dunlap, K. A., Lin, G., Satterfield, M. C., Burghardt, R. C., Wu, G., & Bazer, F. W. (2014). Arginine decarboxylase and agmatinase: An alternative pathway for de novo biosynthesis of polyamines for development of mammalian conceptuses. Biology of Reproduction, 90, 1–15.

    Google Scholar 

  8. Molderings, G. J., & Haenisch, B. (2012). Agmatine (decarboxylated L-arginine): Physiological role and therapeutic potential. Pharmacology & Therapeutics, 133, 351–365.

    Article  CAS  Google Scholar 

  9. Lin, J., Lee, I. S., Frey, J., Slonczewski, J. L., & Foster, J. W. (1995). Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. Journal of Bacteriology, 177, 4097–4104.

    Article  CAS  Google Scholar 

  10. Michael, A. J. (2016). Biosynthesis of polyamines and polyamine-containing molecules. Biochemical Journal, 473, 2315–2329.

    Article  CAS  Google Scholar 

  11. Peremarti, A., Bassie, L., Zhu, C., Christou, P., & Capell, T. (2010). Molecular characterization of the Arginine decarboxylase gene family in rice. Transgenic Research, 19, 785–797.

    Article  CAS  Google Scholar 

  12. Bliven, K. A., Fisher, D. J., & Maurelli, A. T. (2012). Characterization of the activity and expression of arginine decarboxylase in human and animal Chlamydia pathogens. FEMS Microbiology Letters, 337, 140–146.

    Article  CAS  Google Scholar 

  13. Forouhar, F., Lew, S., Seetharaman, J., Xiao, R., Acton, T. B., Montelione, G. T., & Tong, L. (2010). Structures of bacterial biosynthetic arginine decarboxylases. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 66, 1562–1566.

    Article  CAS  Google Scholar 

  14. Wu, W. H., & Morris, D. R. (1973). Biosynthetic arginine decarboxylase from Escherichia coli. Subunit interactions and the role of magnesium ion. Journal of Biological Chemistry, 248, 1696–1699.

    Article  CAS  Google Scholar 

  15. Toney, M. D. (2011). Controlling reaction specificity in pyridoxal phosphate enzymes. Biochimica et Biophysica Acta, 1814, 1407–1418.

    Article  CAS  Google Scholar 

  16. Lin, Y. L., & Gao, J. (2010). Internal proton transfer in the external pyridoxal 5’-phosphate Schiff base in dopa decarboxylase. Biochemistry, 49, 84–94.

    Article  CAS  Google Scholar 

  17. Sun, A., Song, W., Qiao, W., Chen, X., Liu, J., Luo, Q., & Liu, L. (2017). Efficient agmatine production using an arginine decarboxylase with substrate-specific activity. Journal of Chemical Technology & Biotechnology, 92, 2383–2391.

    Article  CAS  Google Scholar 

  18. Zhang, C., & Kim, S. K. (2010). Research and application of marine microbial enzymes: Status and prospects. Marine Drugs, 8, 1920–1934.

    Article  CAS  Google Scholar 

  19. Fernandes, P. (2014). Marine enzymes and food industry: Insight on existing and potential interactions. Frontiers in Marine Science, 1, 46.

    Article  Google Scholar 

  20. Stach, J. E., Maldonado, L. A., Ward, A. C., Goodfellow, M., & Bull, A. T. (2003). New primers for the class Actinobacteria: Application to marine and terrestrial environments. Environmental Microbiology, 5, 828–841.

    Article  CAS  Google Scholar 

  21. Imhoff, J. F., Labes, A., & Wiese, J. (2011). Bio-mining the microbial treasures of the ocean: New natural products. Biotechnology Advances, 29, 468–482.

    Article  CAS  Google Scholar 

  22. Bull, A. T., Ward, A. C., & Goodfellow, M. (2000). Search and discovery strategies for biotechnology: The paradigm shift. Microbiology and Molecular Biology Reviews, 64, 573–606.

    Article  CAS  Google Scholar 

  23. Birolli, W. G., Lima, R. N., & Porto, A. L. M. (2019). Applications of marine-derived microorganisms and their enzymes in biocatalysis and biotransformation, the underexplored potentials. Frontiers in Microbiology, 10, 1453.

    Article  Google Scholar 

  24. Tseng, S. Y., Liu, P. Y., Lee, Y. H., Wu, Z. Y., Huang, C. C., Cheng, C. C., & Tung, K. C. (2018). The pathogenicity of shewanella algae and ability to tolerate a wide range of temperatures and salinities. Canadian Journal of Infectious Diseases and Medical Microbiology, 2018, 1–9.

    Article  Google Scholar 

  25. Bauer, M. J., Stone-Garza, K. K., Croom, D., Andreoli, C., Woodson, P., Graf, P. C. F., & Maves, R. C. (2019). Shewanella algae Infections in United States Naval Special Warfare Trainees. Open Forum Infectious Diseases, 6, ofz442.

    Article  Google Scholar 

  26. Goldschmidt, M. C., & Lockhart, B. M. (1971). Simplified rapid procedure for determination of agmatine and other guanidino-containing compounds. Analytical Chemistry, 43, 1475–1479.

    Article  CAS  Google Scholar 

  27. Song, J., Zhou, C., Liu, R., Wu, X., Wu, D., Hu, X., & Ding, Y. (2010). Expression and purification of recombinant arginine decarboxylase (speA) from Escherichia coli. Molecular Biology Reports, 37, 1823–1829.

    Article  CAS  Google Scholar 

  28. Alam, M., Srivastava, A., Dutta, A., & Sau, A. K. (2018). Biochemical and biophysical studies of Helicobacter pylori arginine decarboxylase, an enzyme important for acid adaptation in host. International Union of Biochemistry & Molecular Biology Life, 70, 658–669.

    Article  CAS  Google Scholar 

  29. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46, W296–W303.

    Article  CAS  Google Scholar 

  30. Guex, N., Peitsch, M. C., & Schwede, T. (2009). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis, 30(Suppl 1), S162-173.

    Article  Google Scholar 

  31. Deng, X., Lee, J., Michael, A. J., Tomchick, D. R., Goldsmith, E. J., & Phillips, M. A. (2010). Evolution of substrate specificity within a diverse family of beta/alpha-barrel-fold basic amino acid decarboxylases: X-ray structure determination of enzymes with specificity for L-arginine and carboxynorspermidine. Journal of Biological Chemistry, 285, 25708–25719.

    Article  CAS  Google Scholar 

  32. Burrell, M., Hanfrey, C. C., Murray, E. J., Stanley-Wall, N. R., & Michael, A. J. (2010). Evolution and multiplicity of arginine decarboxylases in polyamine biosynthesis and essential role in Bacillus subtilis biofilm formation. Journal of Biological Chemistry, 285, 39224–39238.

    Article  CAS  Google Scholar 

  33. Sun, X., Song, W., & Liu, L. M. (2015). Enzymatic production of agmatine by recombinant arginine decarboxylase. Journal of Molecular Catalysis B-Enzymatic, 121, 1–8.

    Article  CAS  Google Scholar 

  34. Balbo, P. B., Patel, C. N., Sell, K. G., Adcock, R. S., Neelakantan, S., Crooks, P. A., & Oliveira, M. A. (2003). Spectrophotometric and steady-state kinetic analysis of the biosynthetic arginine decarboxylase of Yersinia pestis utilizing arginine analogues as inhibitors and alternative substrates. Biochemistry, 42, 15189–15196.

    Article  CAS  Google Scholar 

  35. Sun, X., Song, W., & Liu, L. (2015). Enzymatic production of agmatine by recombinant arginine decarboxylase. Journal of Molecular Catalysis B: Enzymatic, 121, 1–8.

    Article  CAS  Google Scholar 

  36. Shah, R., Akella, R., Goldsmith, E. J., & Phillips, M. A. (2007). X-ray structure of Paramecium bursaria Chlorella virus arginine decarboxylase: Insight into the structural basis for substrate specificity. Biochemistry, 46, 2831–2841.

    Article  CAS  Google Scholar 

  37. Osterman, A. L., Brooks, H. B., Jackson, L., Abbott, J. J., & Phillips, M. A. (1999). Lysine-69 plays a key role in catalysis by ornithine decarboxylase through acceleration of the Schiff base formation, decarboxylation, and product release steps. Biochemistry, 38, 11814–11826.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Demonstration Project of Innovation and Development for Marine Economy of Beihai “The 13th Five-Year Plan” (Bhsfs010-4), Guangxi Natural Science Foundation (AD18281064) and the Guangxi Science and Technology Major Special Project (AA17204075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Hua Wang.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 610 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, XD., Lu, LH., Yue, SY. et al. Characterization of a Novel Shewanella algae Arginine Decarboxylase Expressed in Escherichia coli. Mol Biotechnol 64, 57–65 (2022). https://doi.org/10.1007/s12033-021-00397-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00397-6

Keywords

Navigation