Skip to main content

Advertisement

Log in

Identification of Optimal Expression Parameters and Purification of a Codon-Optimized Human GLIS1 Transcription Factor from Escherichia coli

  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

GLIS1 has multiple roles in embryonic development and in deriving induced pluripotent stem cells by aiding signaling pathways and chromatin assembly. An inexpensive and simple method to produce human GLIS1 protein from Escherichia coli (E. coli) is demonstrated in this study. Various parameters such as codon usage bias, E. coli strains, media, induction conditions (such as inducer concentration, cell density, time, and temperature), and genetic constructs were investigated to obtain soluble expression of human GLIS1 protein. Using identified expression conditions and an appropriate genetic construct, the human GLIS1 protein was homogeneously purified (purity > 90%) under native conditions. Importantly, the purified protein has upheld a stable secondary structure, as demonstrated by circular dichroism spectroscopy. To the best of our knowledge, this is the first study to report the ideal expression conditions of human GLIS1 protein in E. coli to achieve soluble expression and purification under native conditions, upholding its stable secondary structure post-purification. The biological activity of the purified GLIS1 fusion protein was further assessed in MDA-MB-231 cells. This biologically active human GLIS1 protein potentiates new avenues to understand its molecular mechanisms in different cellular functions in various cancers and in the generation of induced pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim, Y. S., Lewandoski, M., Perantoni, A. O., Kurebayashi, S., Nakanishi, G., & Jetten, A. M. (2002). Identification of Glis1, a novel Gli-related, Krüppel-like zinc finger protein containing transactivation and repressor functions. Journal of Biological Chemistry, 277(34), 30901–30913.

    Article  CAS  Google Scholar 

  2. Scoville, D. W., Kang, H. S., & Jetten, A. M. (2017). GLIS1-3: Emerging roles in reprogramming, stem and progenitor cell differentiation and maintenance. Stem Cell Investigation, 4, 1–11.

    Article  Google Scholar 

  3. Jetten, A. M. (2018). GLIS1–3 transcription factors: Critical roles in the regulation of multiple physiological processes and diseases. Cellular and Molecular Life Sciences, 75(19), 3473–3494.

    Article  CAS  PubMed  Google Scholar 

  4. Kang, H. S., Zeruth, G., Lichti-Kaiser, K., Vasanth, S., Yin, Z., Kim, Y.-S., & Jetten, A. M. (2010). Gli-similar (Glis) Krüppel-like zinc finger proteins: Insights into their physiological functions and critical roles in neonatal diabetes and cystic renal disease. Histology and Histopathology, 25(11), 1481–1496.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nakashima, M., Tanese, N., Ito, M., Auerbach, W., Bai, C., Furukawa, T., Toyono, T., Akamine, A., & Joyner, A. L. (2002). A novel gene, GliH1, with homology to the Gli zinc finger domain is not required for mouse development. Mechanisms of Development, 119(1), 21–34.

    Article  CAS  PubMed  Google Scholar 

  6. Maekawa, M., Yamaguchi, K., Nakamura, T., Shibukawa, R., Kodanaka, I., Ichisaka, T., Kawamura, Y., Mochizuki, H., Goshima, N., & Yamanaka, S. (2011). Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature, 474(7350), 225–228.

    Article  CAS  PubMed  Google Scholar 

  7. Yoshioka, N., & Dowdy, S. F. (2017). Enhanced generation of iPSCs from older adult human cells by a synthetic five-factor self-replicative RNA. PLoS ONE, 12(7), 0182018.

    Article  Google Scholar 

  8. Yoshioka, N., Gros, E., Li, H. R., Kumar, S., Deacon, D. C., Maron, C., Muotri, A. R., Chi, N. C., Fu, X. D., Benjamin, D. Y., & Dowdy, S. F. (2013). Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell, 13(2), 246–254.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, L., Chen, Y., Guan, C., Zhao, Z., Li, Q., Yang, J., Mo, J., Wang, B., Wu, W., Yang, X., & Song, L. (2017). Using low-risk factors to generate non-integrated human induced pluripotent stem cells from urine-derived cells. Stem Cell Research Therapy, 8(1), 245.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Sasaki, A., Yamamoto, M., Nakamura, M., Sutou, K., Osafune, K., & Yamanaka, S. (2014). Induction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendoderm. Nature Communications, 5(1), 3678.

    Article  CAS  PubMed  Google Scholar 

  11. Lee, S.-Y., Noh, H. B., Kim, H.-T., Lee, K.-I., & Hwang, D.-Y. (2017). Glis family proteins are differentially implicated in the cellular reprogramming of human somatic cells. Oncotarget, 8(44), 77041–77049.

    Article  Google Scholar 

  12. Maekawa, M., & Yamanaka, S. (2011). Glis1, a unique pro-reprogramming factor, may facilitate clinical applications of iPSC technology. Cell Cycle, 10(21), 3613–3614.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, J., Han, Q., Peng, T., Peng, M., Wei, B., Li, D., Yao, Y., Wang, Y., Zhao, G., Wang, X., & Fu, M. (2015). The oncogene c-Jun impedes somatic cell reprogramming. Nature Cell Biology, 17(7), 856–867.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, B., Wu, L., Li, D., Liu, Y., Guo, J., Li, C., et al. (2019). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Jdp2-Jhdm1b-Mkk6-Glis1-Nanog-Essrb-Sall4. Cell Reports, 27(12), 3473–3485.

    Article  CAS  PubMed  Google Scholar 

  15. Li, L., Chen, K., Wang, T., Wu, Y., Xing, G., Chen, M., et al. (2020). Glis1 facilitates induction of pluripotency via an epigenome–metabolome–epigenome signalling cascade. Nature Metabolism, 2(9), 882–892.

    Article  CAS  PubMed  Google Scholar 

  16. Luo, R., Zhang, X., Wang, L., Zhang, L., Li, G., & Zheng, Z. (2021). GLIS1, a potential candidate gene affect fat deposition in sheep tail. Molecular Biology Reports, 48(5), 4925–4931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yasuoka, Y., Matsumoto, M., Yagi, K., & Okazaki, Y. (2020). Evolutionary history of GLIS genes illuminates their roles in cell reprogramming and ciliogenesis. Molecular Biology and Evolution, 37(1), 100–109.

    Article  CAS  PubMed  Google Scholar 

  18. Shimamoto, K., Tanimoto, K., Fukazawa, T., Nakamura, H., Kanai, A., Bono, H., Ono, H., Eguchi, H., & Hirohashi, N. (2020). GLIS1, a novel hypoxia-inducible transcription factor, promotes breast cancer cell motility via activation of WNT5A. Carcinogenesis, 41(9), 1184–1194.

    Article  CAS  PubMed  Google Scholar 

  19. Song, W., Chen, Y. P., Huang, R., Chen, K., Pan, P. L., Li, J., Yang, Y., & Shang, H. F. (2012). GLIS1: An increased risk factor for late-onset Parkinson’s disease in the Han Chinese population. European Neurology, 68(2), 89–92.

    Article  CAS  PubMed  Google Scholar 

  20. Singh, V. K., Kalsan, M., Kumar, N., Saini, A., & Chandra, R. (2015). Induced pluripotent stem cells: Applications in regenerative medicine, disease modeling, and drug discovery. Frontiers in Cell and Developmental Biology, 3, 2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hu, Q., Chen, R., Teesalu, T., Ruoslahti, E., & Clegg, D. O. (2014). Reprogramming human retinal pigmented epithelial cells to neurons using recombinant proteins. Stem Cells Translational Medicine, 3(12), 1526–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saha, B., Borgohain, P. M., Dey, C., & Thummer, R. P. (2018). iPS cell generation: Current and future challenges. Annals of Stem Cell Research & Therapy, 1(2), 1007.

    Google Scholar 

  23. Borgohain, M. P., Haridhasapavalan, K. K., Dey, C., Adhikari, P., & Thummer, R. P. (2019). An insight into DNA-free reprogramming approaches to generate integration-free induced pluripotent stem cells for prospective biomedical applications. Stem Cell Reviews and Reports, 15(2), 286–313.

    Article  CAS  PubMed  Google Scholar 

  24. Haridhasapavalan, K. K., Borgohain, M. P., Dey, C., Saha, B., Narayan, G., Kumar, S., & Thummer, R. P. (2019). An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene, 686, 146–159.

    Article  CAS  PubMed  Google Scholar 

  25. Dey, C., Raina, K., Thool, M., & Thummer, R. P. (2021). An overview of reprogramming approaches to derive integration-free induced pluripotent stem cells for prospective biomedical applications. In Recent advances in iPSC technology (1st ed., pp. 231–238). Elsevier Academic Press.

  26. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151), 313–317.

    Article  CAS  PubMed  Google Scholar 

  27. Ben-David, U., & Benvenisty, N. (2011). The tumorigenicity of human embryonic and induced pluripotent stem cells. Nature Reviews Cancer, 11(4), 268–277.

    Article  CAS  PubMed  Google Scholar 

  28. Somers, A., Jean, J.-C., Sommer, C. A., Omari, A., Ford, C. C., Mills, J. A., Ying, L., Sommer, A. G., Jean, J. M., Smith, B. W., & Lafyatis, R. (2010). Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells, 28(10), 1728–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ramos-Mejia, V., Fraga, M. F., & Menendez, P. (2012). IPSCs from cancer cells: Challenges and opportunities. Trends in Molecular Medicine, 18(5), 245–247.

    Article  CAS  PubMed  Google Scholar 

  30. Kadari, A., Lu, M., Li, M., Sekaran, T., Thummer, R. P., Guyette, N., Chu, V., & Edenhofer, F. (2014). Excision of viral reprogramming cassettes by Cre protein transduction enables rapid, robust and efficient derivation of transgene-free human induced pluripotent stem cells. Stem Cell Research & Therapy, 5(2), 47.

    Article  Google Scholar 

  31. Baldo, A., van den Akker, E., Bergmans, H. E., Lim, F., & Pauwels, K. (2013). General considerations on the biosafety of virus-derived vectors used in gene therapy and vaccination. Current Gene Therapy, 13(6), 385–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., & Woltjen, K. (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458(7239), 771–775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sommer, C. A., & Mostoslavsky, G. (2013). The evolving field of induced pluripotency: Recent progress and future challenges. Journal of Cellular Physiology, 228(2), 267–275.

    Article  CAS  PubMed  Google Scholar 

  34. O’Malley, J., Woltjen, K., & Kaji, K. (2009). New strategies to generate induced pluripotent stem cells. Current Opinion in Biotechnology, 20(5), 516–521.

    Article  PubMed  Google Scholar 

  35. Dey, C., Narayan, G., Krishna Kumar, H., Borgohain, M. P., Lenka, N., & Thummer, R. P. (2017). Cell-penetrating peptides as a tool to deliver biologically active recombinant proteins to generate transgene-free induced pluripotent stem cells. Studies on Stem Cell Research and Therapy, 3(1), 6–15.

    Article  Google Scholar 

  36. Seo, B. J., Hong, Y. J., & Do, J. T. (2017). Cellular reprogramming using protein and cell-penetrating peptides. International Journal of Molecular Medicine, 18(3), 552.

    Google Scholar 

  37. Ebrahimi, B. (2015). Reprogramming barriers and enhancers: Strategies to enhance the efficiency and kinetics of induced pluripotency. Cell Regeneration, 4(1), 4–10.

    Article  Google Scholar 

  38. Haridhasapavalan, K. K., Raina, K., Dey, C., Adhikari, P., & Thummer, R. P. (2020). An insight into reprogramming barriers to iPSC generation. Stem Cells Reviews and Reports, 16(1), 56–81.

    Article  Google Scholar 

  39. Borgohain, M. P., Narayan, G., Kumar, H. K., Dey, C., & Thummer, R. P. (2018). Maximizing expression and yield of human recombinant proteins from bacterial cell factories for biomedical applications. In P. Kumar, J. K. Patra, & P. Chandra (Eds.), Advances in microbial biotechnology (pp. 447–486). Apple Academic Press.

    Google Scholar 

  40. Bhatwa, A., Wang, W., Hassan, Y. I., Abraham, N., Li, X.-Z., & Zhou, T. (2021). Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Frontiers in Bioengineering and Biotechnology, 9, 65.

    Article  Google Scholar 

  41. Haridhasapavalan, K. K., Sundaravadivelu, P. K., & Thummer, R. P. (2020). Codon optimization, cloning, expression, purification, and secondary structure determination of human ETS2 transcription factor. Molecular Biotechnology, 62(10), 485–494.

    Article  CAS  PubMed  Google Scholar 

  42. Thool, M., Dey, C., Bhattacharyya, S., Sudhagar, S., & Thummer, R. P. (2021). Generation of a recombinant stem cell-specific human SOX2 protein from Escherichia coli under native conditions. Molecular Biotechnology, 63(4), 327–338.

    Article  CAS  PubMed  Google Scholar 

  43. Narayan, G., Sundaravadivelu, P. K., Agrawal, A., Gogoi, R., Nagotu, S., & Thummer, R. P. (2021). Soluble expression, purification, and secondary structure determination of human PDX1 transcription factor. Protein Expression and Purification, 180, 105807.

    Article  CAS  PubMed  Google Scholar 

  44. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  45. Haridhasapavalan, K. K., Sundaravadivelu, P. K., Bhattacharyya, S., Harsh, S. R., Raina, K., & Thummer, R. P. (2021). Generation of cell-permeant recombinant human transcription factor GATA4 from E. coli. Bioprocess and Biosystems Engineering, 44(6), 1131–1146.

    Article  CAS  PubMed  Google Scholar 

  46. Micsonai, A., Wien, F., Bulyáki, É., Kun, J., Moussong, É., Lee, Y.-H., Goto, Y., Réfrégiers, M., & Kardos, J. (2018). BeStSel: A web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Research, 46(W1), 315–322.

    Article  Google Scholar 

  47. Kane, J. F. (1995). Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Current Opinion in Biotechnology, 6(5), 494–500.

    Article  CAS  PubMed  Google Scholar 

  48. Dey, C., Thool, M., Bhattacharyya, S., Sudhagar, S., & Thummer, R. P. (2021). Generation of biologically active recombinant human OCT4 protein from E. coli. 3 Biotech, 11(5), 207.

    Article  PubMed  Google Scholar 

  49. Joseph, B., Pichaimuthu, S., & Rao, M. S. (2015). An overview of the parameters for recombinant protein expression in Escherichia coli. Journal of Cell Science & Therapy, 6(5), 221.

    Article  Google Scholar 

  50. Kaur, J., Kumar, A., & Kaur, J. (2018). Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. International Journal of Biology and Macromolecules, 106, 803–822.

    Article  CAS  Google Scholar 

  51. Dong, G., Zhao, X., Guo, J., Ma, L., Zhou, H., Liu, Q., Zhao, X., Wang, C., & Wu, K. (2021). Functional expression and purification of recombinant full-length human ATG7 protein with HIV-1 Tat peptide in Escherichia coli. Protein Expression and Purification, 182, 105844.

    Article  CAS  PubMed  Google Scholar 

  52. Damough, S., Sabzalinezhad, M., Talebkhan, Y., Nematollahi, L., Bayat, E., Torkashvand, F., Adeli, A., Jahandar, H., Barkhordari, F., & Mahboudi, F. (2021). Optimization of culture conditions for high-level expression of soluble and active tumor necrosis factor-α in E. coli. Protein Expression and Purification, 179, 105805.

    Article  CAS  PubMed  Google Scholar 

  53. Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: Advances and challenges. Frontiers in Microbiology, 5, 172.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Berrow, N. S., Büssow, K., Coutard, B., Diprose, J., Ekberg, M., Folkers, G. E., Lévy, N., Lieu, V., Owens, R. J., Peleg, Y., & Pinaglia, C. (2006). Recombinant protein expression and solubility screening in Escherichia coli: A comparative study. Acta Crystallographica Section D: Biological Crystallography, 62(10), 1218–1226.

    Article  Google Scholar 

  55. Tegel, H., Tourle, S., Ottosson, J., & Persson, A. (2010). Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta (DE3). Protein Expression and Purification, 69(2), 159–167.

    Article  CAS  PubMed  Google Scholar 

  56. Maertens, B., Spriestersbach, A., von Groll, U., Roth, U., Kubicek, J., Gerrits, M., Graf, M., Liss, M., Daubert, D., Wagner, R., & Schäfer, F. (2010). Gene optimization mechanisms: A multi-gene study reveals a high success rate of full-length human proteins expressed in Escherichia coli. Protein Science, 19(7), 1312–1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ryan, B. J., & Henehan, G. T. (2013). Overview of approaches to preventing and avoiding proteolysis during expression and purification of proteins. Current Protocols in Protein Science, 71(1), 5–25.

    Article  Google Scholar 

  58. Kelly, S. M., Jess, T. J., & Price, N. C. (2005). How to study proteins by circular dichroism? Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1751(2), 119–139.

    Article  CAS  Google Scholar 

  59. Greenfield, N. J. (2006). Using circular dichroism spectra to estimate protein secondary structure. Nature Protocol, 1(6), 2876–2890.

    Article  CAS  Google Scholar 

  60. Grada, A., Otero-Vinas, M., Prieto-Castrillo, F., Obagi, Z., & Falanga, V. (2017). Research techniques made simple: Analysis of collective cell migration using the wound healing assay. Journal of Investigative Dermatology, 137(2), 11–16.

    Article  Google Scholar 

  61. Ghasemi, Y., Ghoshoon, M. B., Taheri, M., Negahdaripour, M., & Nouri, F. (2020). Cloning, expression and purification of human PDGF-BB gene in Escherichia coli: New approach in PDGF-BB protein production. Gene Reports, 19, 100653.

    Article  Google Scholar 

  62. Zamani, M., Berenjian, A., Hemmati, S., Nezafat, N., Ghoshoon, M. B., Dabbagh, F., Mohkam, M., & Ghasemi, Y. (2015). Cloning, expression, and purification of a synthetic human growth hormone in Escherichia coli using response surface methodology. Molecular Biotechnology, 57(3), 241–250.

    Article  CAS  PubMed  Google Scholar 

  63. Galluccio, M., Amelio, L., Scalise, M., Pochini, L., Boles, E., & Indiveri, C. (2012). Over-expression in E. coli and purification of the human OCTN2 transport protein. Molecular Biotechnology, 50(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

  64. Bhat, E. A., Sajjad, N., Sabir, J. S. M., Kamli, M. R., Hakeem, K. R., Rather, I. A., & Bahieldin, A. (2020). Molecular cloning, expression, overproduction and characterization of human TRAIP Leucine zipper protein. Saudi Journal of Biological Sciences, 27(6), 1562–1565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tripathi, N. K., Sathyaseelan, K., Jana, A. M., & Rao, P. V. L. (2009). High yield production of heterologous proteins with Escherichia coli. Defence Science Journal, 59(2), 137–146.

    Article  CAS  Google Scholar 

  66. Vincentelli, R., Cimino, A., Geerlof, A., Kubo, A., Satou, Y., & Cambillau, C. (2011). High-throughput protein expression screening and purification in Escherichia coli. Methods, 55(1), 65–72.

    Article  CAS  PubMed  Google Scholar 

  67. Pannunzio Carmignotto, G., & Rodrigues Azzoni, A. (2019). On the expression of recombinant Cas9 protein in E. coli BL21(DE3) and BL21(DE3) Rosetta strains. Journal of Biotechnology, 306, 62–70.

    Article  Google Scholar 

  68. Søgaard, K. M., & Nørholm, M. H. H. (2016). Side effects of extra tRNA supplied in a typical bacterial protein production scenario. Protein Science, 25(11), 2102–2108.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bosnali, M., & Edenhofer, F. (2008). Generation of transducible versions of transcription factors Oct4 and Sox2. Biological Chemistry, 389(7), 851–861.

    Article  CAS  PubMed  Google Scholar 

  70. Braun, P., Hu, Y., Shen, B., Halleck, A., Koundinya, M., Harlow, E., & LaBaer, J. (2002). Proteome-scale purification of human proteins from bacteria. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 2654–2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kleman, G. L., & Strohl, W. R. (1994). Acetate metabolism by Escherichia coli in high-cell-density fermentation. Applied and Environmental Microbiology, 60(11), 3952–3958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. de Mey, M., de Maeseneire, S., Soetaert, W., & Vandamme, E. (2007). Minimizing acetate formation in E. coli fermentations. Journal of Industrial Microbiology and Biotechnology, 34(11), 689–700.

    Article  PubMed  Google Scholar 

  73. Åkesson, M., Hagander, P., Axelsson, J. P., & Bioeng, B. (2001). Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding. Biotechnology and Bioengineering, 73(3), 223–230.

    Article  PubMed  Google Scholar 

  74. Eiteman, M. A., & Altman, E. (2006). Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends in Biotechnology, 24(11), 530–536.

    Article  CAS  PubMed  Google Scholar 

  75. Martínez-Gómez, K., Flores, N., Castañeda, H. M., Martínez-Batallar, G., Hernández-Chávez, G., Ramírez, O. T., Gosset, G., Encarnación, S., & Bolivar, F. (2012). New insights into Escherichia coli metabolism: Carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microbial Cell factories, 11(1), 1–21.

    Article  Google Scholar 

  76. Baneyx, F., & Mujacic, M. (2004). Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology, 22(11), 1399–1408.

    Article  CAS  PubMed  Google Scholar 

  77. Sørensen, H. P., & Mortensen, K. K. (2005). Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial Cell Factories, 4(1), 1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  78. San-Miguel, T., Pérez-Bermúdez, P., & Gavidia, I. (2013). Production of soluble eukaryotic recombinant proteins in E. coli is favoured in early log-phase cultures induced at low temperature. Springerplus, 2(1), 89.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jadeja, D., Dogra, N., Arya, S., Singh, G., Singh, G., & Kaur, J. (2016). Characterization of LipN (Rv2970c) of Mycobacterium Tuberculosis H37Rv and its probable role in xenobiotic degradation. Journal of Cellular Biochemistry, 117(2), 390–401.

    Article  CAS  PubMed  Google Scholar 

  80. Balbás, P. (2001). Understanding the art of producing protein and nonprotein molecules in Escherichia coli. Molecular Biotechnology, 19(3), 251–267.

    Article  PubMed  Google Scholar 

  81. Hu, J. H., Wang, F., & Liu, C. Z. (2015). Development of an efficient process intensification strategy for enhancing Pfu DNA polymerase production in recombinant Escherichia coli. Bioprocess and Biosystems Engineering, 38(4), 651–659.

    Article  CAS  PubMed  Google Scholar 

  82. Olaofe, O. A., Burton, S. G., Cowan, D. A., & Harrison, S. T. L. (2010). Improving the production of a thermostable amidase through optimising IPTG induction in a highly dense culture of recombinant Escherichia coli. Biochemical Engineering Journal, 52(1), 19–24.

    Article  CAS  Google Scholar 

  83. Thier, M., Münst, B., & Edenhofer, F. (2010). Exploring refined conditions for reprogramming cells by recombinant Oct4 protein. International Journal of Developmental Biology, 54(11–12), 1713–1721.

    Article  CAS  Google Scholar 

  84. Thier, M., Münst, B., Mielke, S., & Edenhofer, F. (2012). Cellular reprogramming employing recombinant Sox2 protein. Stem Cells International, 2012, 549846.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Peitz, M., Münst, B., Thummer, R. P., Helfen, M., & Edenhofer, F. (2014). Cell-permeant recombinant Nanog protein promotes pluripotency by inhibiting endodermal specification. Stem Cell Research, 12(3), 680–689.

    Article  CAS  PubMed  Google Scholar 

  86. Münst, B., Thier, M. C., Winnemöller, D., Helfen, M., Thummer, R. P., & Edenhofer, F. (2016). Nanog induces suppression of senescence through downregulation of p27KIP1 expression. Journal of Cell Science, 129(5), 912–920.

    PubMed  PubMed Central  Google Scholar 

  87. Vadnais, C., Shooshtarizadeh, P., Rajadurai, C. V., Lesurf, R., Hulea, L., Davoudi, S., Cadieux, C., Hallett, M., Park, M., & Nepveu, A. (2014). Autocrine activation of the Wnt/b-catenin pathway by CUX1 and GLIS1 in breast cancers. Biology Open, 3(10), 937–946.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Haridhasapavalan, K. K., Ranjan, S. H., Bhattacharyya, S., & Thummer, R. P. (2021). Soluble expression, purification, and secondary structure determination of human MESP1 transcription factor. Applied Microbiology and Biotechnology, 105(6), 2363–2376.

    Article  CAS  PubMed  Google Scholar 

  89. Francis, D. M., & Page, R. (2010). Strategies to optimize protein expression in E. coli. Current Protocol in Protein Science, 61(1), 5–24.

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the members of the Laboratory for Stem Cell Engineering and Regenerative Medicine (SCERM) for their critical reading and excellent support. This work was supported by North Eastern Region—Biotechnology Program Management Cell (NERBPMC), Department of Biotechnology, Government of India (BT/PR16655/NER/95/132/2015), and also by IIT Guwahati Institutional Top-Up on Start-Up Grant.

Author information

Authors and Affiliations

Authors

Contributions

CD was responsible for conception and design, collection and/or assembly of data, data analysis and interpretation, manuscript writing, and final approval of the manuscript; VV was responsible for collection and/or assembly of data, data analysis and interpretation, and final editing and approval of the manuscript; and RPT was responsible for conception and design, collection and/or assembly of data, data analysis and interpretation, manuscript writing, final approval of manuscript, and financial support. All the authors gave consent for publication.

Corresponding author

Correspondence to Rajkumar P. Thummer.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 1735 kb)

Figure S1 Schematic illustration of the tagging pattern in human GLIS1 gene. Representation of GLIS1 fusion genes tagged at both N- and C-terminal end. His polyhistidine tag (8X); TAT transactivator of transcription; NLS nuclear localization signal.

Supplementary file2 (TIF 1731 kb)

Figure S2 In silico analysis of GLIS1 gene before and after codon optimization using GRCA tool. The bar graph represents the percentage distribution of codon quality groups before (red) and after (blue) codon optimization. Codons above the threshold (green dotted line) are most likely not to interfere with the gene expression in E. coli.

Supplementary file3 (TIF 14945 kb)

Figure S3 In silico analysis of GLIS1 gene before and after codon optimization using GCUA tool. (A) Bar graph representation of the relative adaptiveness value (in %) of individual codons before (left) and after (right) codon optimization. All the 621 codons are represented for both the non-optimized and codon-optimized GLIS1 gene. Relative adaptiveness value of codon ≤ 30% is highlighted in magenta.

Supplementary file4 (TIF 4130 kb)

Figure S4 Restriction analysis of GLIS1 fusion genetic constructs. His polyhistidine tag (8X); TAT transactivator of transcription; NLS Nuclear localization signal.

Supplementary file5 (TIF 4144 kb)

Figure S5 Screening for lower inducer concentration for the expression of GLIS1-NTH fusion protein (n = 2).

Supplementary file6 (TIF 1773 kb)

Figure S6 Effect of the exogenously delivered recombinant GLIS1-NTH fusion protein on the rate of migration of BJ human fibroblast cells. Cells were seeded in 24-well culture dishes, and the respective wells were treated with protein or vehicle control for 24 h. Graphical representation of the rate of migration of protein vs. vehicle control-treated cells (p ≤ 0.05) (n = 2).

Supplementary file7 (DOCX 12 kb)

Supplementary file8 (DOCX 12 kb)

Supplementary file9 (DOCX 13 kb)

Supplementary file10 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, C., Venkatesan, V. & Thummer, R.P. Identification of Optimal Expression Parameters and Purification of a Codon-Optimized Human GLIS1 Transcription Factor from Escherichia coli. Mol Biotechnol 64, 42–56 (2022). https://doi.org/10.1007/s12033-021-00390-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00390-z

Keywords

Navigation