Skip to main content
Log in

Characterization of a Stable Form of Carboxypeptidase G2 (Glucarpidase), a Potential Biobetter Variant, From Acinetobacter sp. 263903-1

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Carboxypeptidase G2 (CPG2) is a bacterial enzyme widely used to detoxify methotrexate (MTX) and in enzyme/prodrug therapy for cancer treatment. However, several drawbacks, such as instability, have limited its efficiency. Herein, we have evaluated the properties of a putative CPG2 from Acinetobacter sp. 263903-1 (AcCPG2). AcCPG2 is compared with a CPG2 derived from Pseudomonas sp. strain RS-16 (PsCPG2), available as an FDA-approved medication called glucarpidase. After modeling AcCPG2 using the I-TASSER program, the refined model was validated by PROCHECK, VERIFY 3D and according to the Z score of the model. Using computational analyses, AcCPG2 displayed higher thermodynamic stability and a lower aggregation propensity than PsCPG2. AcCPG2 showed an optimum pH of 7.5 against MTX and was stable over a pH range of 5–10. AcCPG2 exhibited optimum activity at 50 °C and higher thermal stability at a temperature range of 20–70 °C compared to PsCPG2. The Km value of the purified AcCPG2 toward folate and MTX was 31.36 µM and 44.99 µM, respectively. The Vmax value of AcCPG2 for folate and MTX was 125.80 µmol/min/mg and 48.90  µmol/min/mg, respectively. Accordingly, thermostability and pH versatility makes AcCPG2 a potential biobetter variant for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rowsell, S., Pauptit, R. A., Tucker, A. D., Melton, R. G., Blow, D. M., & Brick, P. (1997). Crystal structure of carboxypeptidase G2, a bacterial enzyme with applications in cancer therapy. Structure, 5(3), 337–347.

    Article  CAS  PubMed  Google Scholar 

  2. McCullough, J. L., Chabner, B. A., & Bertino, J. R. (1971). Purification and properties of carboxypeptidase G1. Journal of Biological Chemistry, 246(23), 7207–7213.

    Article  CAS  PubMed  Google Scholar 

  3. Green, J. M. (2012). Glucarpidase to combat toxic levels of methotrexate in patients. Therapeutics and Clinical Risk Management, 8, 403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Minton, N. P., Atkinson, T., Bruton, C. J., & Sherwood, R. F. (1984). The complete nucleotide sequence of the Pseudomonas gene coding for carboxypeptidase G2. Gene, 31, 31–38.

    Article  CAS  PubMed  Google Scholar 

  5. Sherwood, R. F., Melton, R. G., Alwan, S. M., & Hughes, P. (1985). Purification and properties of carboxypeptidase G2 from Pseudomonas sp. strain RS-16: Use of a novel triazine dye affinity method. European Journal of Biochemistry, 148(3), 447–453.

    Article  CAS  PubMed  Google Scholar 

  6. Goda, S. K., Rashidi, F. A. B., Fakharo, A. A., & Al-Obaidli, A. (2009). Functional overexpression and purification of a codon optimized synthetic glucarpidase (carboxypeptidase G2) in Escherichia coli. The Protein Journal, 28(9), 435–442.

    Article  CAS  PubMed  Google Scholar 

  7. Trifilio, S., Ma, S., & Petrich, A. (2013). Reduced-dose carboxypeptidase-G2 successfully lowers elevated methotrexate levels in an adult with acute methotrexate-induced renal failure. Clinical Advances in Hematology & Oncology, 11(5), 322–323.

    Google Scholar 

  8. Bayineni, V. K., Venkatesh, K., Sahu, C. K., & Kadeppagari, R. K. (2016). The 46 kDa dimeric protein from Variovorax paradoxus shows faster methotrexate degrading activity in its nanoform compare to the native enzyme. Enzyme and Microbial Technology, 85, 38–43.

    Article  CAS  PubMed  Google Scholar 

  9. Jeyaharan, D., Aston, P., Garcia-Perez, A., Schouten, J., Davis, P., & Dixon, A. M. (2016). Soluble expression, purification and functional characterisation of carboxypeptidase G2 and its individual domains. Protein Expression and Purification, 127, 44–52.

    Article  CAS  PubMed  Google Scholar 

  10. Marais, R., Spooner, R. A., Light, Y., Martin, J., & Springer, C. J. (1996). Gene-directed enzyme prodrug therapy with a mustard prodrug/carboxypeptidase G2 combination. Cancer Research, 56(20), 4735–4742.

    CAS  PubMed  Google Scholar 

  11. Bhatia, J., Sharma, S. K., Chester, K. A., Pedley, R. B., Boden, R. W., Read, D. A., & Begent, R. H. (2000). Catalytic activity of an in vivo tumor targeted anti-CEA scFv: Carboxypeptidase G2 fusion protein. International Journal of Cancer, 85(4), 571–577.

    Article  CAS  PubMed  Google Scholar 

  12. Jamin, Y., Smyth, L., Robinson, S. P., Poon, E. S., Eykyn, T. R., Springer, C. J., & Payne, G. S. (2011). Noninvasive detection of carboxypeptidase G2 activity in vivo. NMR in Biomedicine, 24(4), 343–350.

    Article  CAS  PubMed  Google Scholar 

  13. Capucha, V., Mendes, E., Francisco, A. P., & Perry, M. J. (2012). Development of triazene prodrugs for ADEPT strategy: New insights into drug delivery system based on carboxypeptidase G2 activation. Bioorganic & Medicinal Chemistry Letters, 22(22), 6903–6908.

    Article  CAS  Google Scholar 

  14. Karjoo, Z., Chen, X., & Hatefi, A. (2016). Progress and problems with the use of suicide genes for targeted cancer therapy. Advanced Drug Delivery Reviews, 99, 113–128.

    Article  CAS  PubMed  Google Scholar 

  15. Rashidi, F. B., AlQhatani, A. D., Bashraheel, S. S., Shaabani, S., Groves, M. R., Dömling, A., & Goda, S. K. (2018). Isolation and molecular characterization of novel glucarpidases: Enzymes to improve the antibody directed enzyme pro-drug therapy for cancer treatment. PloS One, 13(4), e0196254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. AlQahtani, A. D., Al-Mansoori, L., Bashraheel, S. S., Rashidi, F. B., Al-Yafei, A., Elsinga, P., & Goda, S. K. (2019). Production of “biobetter” glucarpidase variants to improve drug detoxification and antibody directed enzyme prodrug therapy for cancer treatment. European Journal of Pharmaceutical Sciences, 127, 79–91.

    Article  CAS  PubMed  Google Scholar 

  17. Brumano, L. P., da Silva, F. V., Costa-Silva, T. A., Apolinário, A. C., Santos, J. H., Kleingesinds, E. K., Monteiro, G., Rangel-Yagui, C. D., Benyahia, B., & Junior, A. P. (2019). Development of L-asparaginase biobetters: Current research status and review of the desirable quality profiles. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2018.00212

    Article  PubMed  PubMed Central  Google Scholar 

  18. Barbosa, M. D., Kumar, S., Loughrey, H., & Singh, S. K. (2012). Biosimilars and biobetters as tools for understanding and mitigating the immunogenicity of biotherapeutics. Drug Discovery Today, 17, 1282–1288.

    Article  CAS  PubMed  Google Scholar 

  19. Kesik-Brodacka, M. (2018). Progress in biopharmaceutical development. Biotechnology and Applied Biochemistry, 65(3), 306–322.

    Article  CAS  PubMed  Google Scholar 

  20. Sadeghian, I., Rezaie, Z., Rahmatabadi, S. S., & Hemmati, S. (2020). Biochemical insights into a novel thermo/organo tolerant bilirubin oxidase from Thermosediminibacter oceani and its application in dye decolorization. Process Biochemistry, 88, 38–50.

    Article  CAS  Google Scholar 

  21. Rahmatabadi, S. S., Sadeghian, I., Nezafat, N., Negahdaripour, M., Hajighahramani, N., Hemmati, S., & Ghasemi, Y. (2017). In silico investigation of pullulanase enzymes from various Bacillus species. Current Proteomics, 14(3), 175–185.

    Article  CAS  Google Scholar 

  22. Wadhwani, S. A., Shedbalkar, U. U., Singh, R., & Chopade, B. A. (2018). Biosynthesis of gold and selenium nanoparticles by purified protein from Acinetobacter sp. SW 30. Enzyme and Microbial Technology, 111, 81–86.

    Article  CAS  PubMed  Google Scholar 

  23. Lee, C. R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y. B., Cha, C. J., Jeong, B. C., & Lee, S. H. (2017). Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Frontiers in Cellular and Infection Microbiology, 7, 55.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lakshmikanth, M., Manohar, S., & Lalitha, J. (2009). Purification and characterization of β-agarase from agar-liquefying soil bacterium, Acinetobacter sp., AG LSL-1. Process Biochemistry, 44(9), 999–1003.

    Article  CAS  Google Scholar 

  25. Sikarwar, J., Kaushik, S., Sinha, M., Kaur, P., Sharma, S., & Singh, T. P. (2013). Cloning, expression, and purification of nucleoside diphosphate kinase from Acinetobacter baumannii. Enzyme Research. https://doi.org/10.1155/2013/597028

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang, C. H., Zhao, T. X., Li, M., Zhang, C., & Xing, X. H. (2016). Characterization of a novel Acinetobacter baumannii xanthine dehydrogenase expressed in Escherichia coli. Biotechnology Letters, 38(2), 337–344.

    Article  CAS  PubMed  Google Scholar 

  27. Gururaj, P., Ramalingam, S., Devi, G. N., & Gautam, P. (2016). Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07. Brazilian Journal of Microbiology, 47(3), 647–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stivala, A., Wybrow, M., Wirth, A., Whisstock, J. C., & Stuckey, P. J. (2011). Automatic generation of protein structure cartoons with Pro-origami. Bioinformatics, 27(23), 3315–3316.

    Article  CAS  PubMed  Google Scholar 

  29. Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER suite: Protein structure and function prediction. Nature Methods, 12(1), 7–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu, D., & Zhang, Y. (2011). Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophysical Journal, 101(10), 2525–2534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 41(W1), W384–W388.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Laskowski, R. A. (2007). Enhancing the functional annotation of PDB structures in PDBsum using key figures extracted from the literature. Bioinformatics, 23(14), 1824–1827.

    Article  CAS  PubMed  Google Scholar 

  33. Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science, 27(1), 129–134.

    Article  CAS  PubMed  Google Scholar 

  34. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). [20] VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404.

    Article  CAS  PubMed  Google Scholar 

  36. Pucci, F., Kwasigroch, J. M., & Rooman, M. (2017). SCooP: An accurate and fast predictor of protein stability curves as a function of temperature. Bioinformatics, 33(21), 3415–3422.

    Article  CAS  PubMed  Google Scholar 

  37. Schymkowitz, J. W., Rousseau, F., Martins, I. C., Ferkinghoff-Borg, J., Stricher, F., & Serrano, L. (2005). Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Proceedings of the National Academy of Sciences, 102(29), 10147–10152.

    Article  CAS  Google Scholar 

  38. Zaharieva, N., Dimitrov, I., Flower, D. R., & Doytchinova, I. (2017). Immunogenicity prediction by VaxiJen: A ten year overview. Journal of Proteomics Bioinformatics, 10, 298–310.

    Google Scholar 

  39. Andreatta, M., & Nielsen, M. (2018). Bioinformatics tools for the prediction of T-cell epitopes. In J. Rockberg & J. Nilvebrant (Eds.), Epitope mapping protocols (pp. 269–281). Humana Press.

    Chapter  Google Scholar 

  40. Song, J., Li, F., Leier, A., Marquez-Lago, T. T., Akutsu, T., Haffari, G., Chou, K. C., Webb, G. I., & Pike, R. N. (2018). PROSPERous: High-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy. Bioinformatics, 34(4), 684–687.

    Article  CAS  PubMed  Google Scholar 

  41. Rawlings, N. D. (2016). Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation. Biochimie, 122, 5–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Conchillo-Solé, O., de Groot, N. S., Avilés, F. X., Vendrell, J., Daura, X., & Ventura, S. (2007). AGGRESCAN: A server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics, 8(1), 1–17.

    Article  CAS  Google Scholar 

  43. Sadeghian, I., Khalvati, B., Ghasemi, Y., & Hemmati, S. (2018). TAT-mediated intracellular delivery of carboxypeptidase G2 protects against methotrexate-induced cell death in HepG2 cells. Toxicology and Applied Pharmacology, 346, 9–18.

    Article  CAS  PubMed  Google Scholar 

  44. Behzadipour, Y., Sadeghian, I., Ghaffarian Bahraman, A., & Hemmati, S. (2021). Introducing a delivery system for melanogenesis inhibition in melanoma B16F10 cells mediated by the conjugation of tyrosine ammonia-lyase and a TAT-penetrating peptide. Biotechnology Progress, 37(1), e3071.

    Article  CAS  PubMed  Google Scholar 

  45. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  46. Hemmati, S., Schneider, B., Schmidt, T. J., Federolf, K., Alfermann, A. W., & Fuss, E. (2007). Justicidin B 7-hydroxylase, a cytochrome P450 monooxygenase from cell cultures of Linum perenne Himmelszelt involved in the biosynthesis of diphyllin. Phytochemistry, 68, 2736–2743.

    Article  CAS  PubMed  Google Scholar 

  47. Hameduh, T., Haddad, Y., Adam, V., & Heger, Z. (2020). Homology modeling in the time of collective and artificial intelligence. Computational and Structural Biotechnology Journal, 18, 3494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ceaglio, N., Etcheverrigaray, M., Kratje, R., & Oggero, M. (2010). Influence of carbohydrates on the stability and structure of a hyperglycosylated human interferon alpha mutein. Biochimie, 92(8), 971–978.

    Article  CAS  PubMed  Google Scholar 

  49. Al-Qahtani, A. D., Bashraheel, S. S., Rashidi, F. B., O’Connor, C. D., Romero, A. R., Domling, A., & Goda, S. K. (2019). Production of “biobetter” variants of glucarpidase with enhanced enzyme activity. Biomedicine & Pharmacotherapy, 112, 108725.

    Article  CAS  Google Scholar 

  50. Khoramnia, A., Ebrahimpour, A., Beh, B. K., & Lai, O. M. (2011). Production of a solvent, detergent, and thermotolerant lipase by a newly isolated Acinetobacter sp. in submerged and solid-state fermentations. Journal of Biomedicine and Biotechnology. https://doi.org/10.1155/2011/702179

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ahmad, S., Raza, S., Uddin, R., & Azam, S. S. (2018). Comparative subtractive proteomics based ranking for antibiotic targets against the dirtiest superbug: Acinetobacter baumannii. Journal of Molecular Graphics and Modelling, 82, 74–92.

    Article  CAS  PubMed  Google Scholar 

  52. Rahmatabadi, S. S., Sadeghian, I., Ghasemi, Y., Sakhteman, A., & Hemmati, S. (2019). Identification and characterization of a sterically robust phenylalanine ammonia-lyase among 481 natural isoforms through association of in silico and in vitro studies. Enzyme and Microbial Technology, 22, 36–54.

    Article  CAS  Google Scholar 

  53. Pramanik, K., Ghosh, P. K., Ray, S., Sarkar, A., Mitra, S., & Maiti, T. K. (2017). An in silico structural, functional and phylogenetic analysis with three dimensional protein modeling of alkaline phosphatase enzyme of Pseudomonas aeruginosa. Journal of Genetic Engineering and Biotechnology, 15(2), 527–537.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Behzadipour, Y., & Hemmati, S. (2019). Considerations on the rational design of covalently conjugated cell-penetrating peptides (CPPs) for intracellular delivery of proteins: A guide to CPP selection using glucarpidase as the model cargo molecule. Molecules, 24(23), 4318.

    Article  CAS  PubMed Central  Google Scholar 

  55. Pucci, F., & Rooman, M. (2014). Stability curve prediction of homologous proteins using temperature-dependent statistical potentials. PLoS Computational Biology, 10(7), e1003689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Agrawal, N. J., Kumar, S., Wang, X., Helk, B., Singh, S. K., & Trout, B. L. (2011). Aggregation in protein-based biotherapeutics: Computational studies and tools to identify aggregation-prone regions. Journal of Pharmaceutical Sciences, 100(12), 5081–5095.

    Article  CAS  PubMed  Google Scholar 

  57. Rosenberg, A. S. (2006). Effects of protein aggregates: An immunologic perspective. The AAPS Journal, 8(3), E501–E507.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kramer, R. M., Shende, V. R., Motl, N., Pace, C. N., & Scholtz, J. M. (2012). Toward a molecular understanding of protein solubility: Increased negative surface charge correlates with increased solubility. Biophysical Journal, 102(8), 1907–1915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Prabakaran, R., Rawat, P., Thangakani, A. M., Kumar, S., & Gromiha, M. M. (2021). Protein aggregation: In silico algorithms and applications. Biophysical Reviews, 13, 71–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, W., Prabakaran, P., Chen, W., Zhu, Z., Feng, Y., & Dimitrov, D. S. (2016). Antibody aggregation: Insights from sequence and structure. Antibodies, 5(3), 19.

    Article  PubMed Central  CAS  Google Scholar 

  61. Ventura, S., Zurdo, J., Narayanan, S., Parreño, M., Mangues, R., Reif, B., Chiti, F., Giannoni, E., Dobson, C. M., Aviles, F. X., & Serrano, L. (2004). Short amino acid stretches can mediate amyloid formation in globular proteins: The Src homology 3 (SH3) case. Proceedings of the National Academy of Sciences, 101(19), 7258–7263.

    Article  CAS  Google Scholar 

  62. De Groot, N. S., Aviles, F. X., Vendrell, J., & Ventura, S. (2006). Mutagenesis of the central hydrophobic cluster in Aβ42 Alzheimer’s peptide: Side-chain properties correlate with aggregation propensities. The FEBS Journal, 273(3), 658–668.

    Article  PubMed  CAS  Google Scholar 

  63. Viet, M. H., Ngo, S. T., Lam, N. S., & Li, M. S. (2011). Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity. The Journal of Physical Chemistry B, 115(22), 7433–7446.

    Article  CAS  PubMed  Google Scholar 

  64. Pandey, R. K., Bhatt, T. K., & Prajapati, V. K. (2018). Novel immunoinformatics approaches to design multi-epitope subunit vaccine for malaria by investigating anopheles salivary protein. Scientific Reports, 8(1), 1–11.

    Article  Google Scholar 

  65. Böttger, R., Hoffmann, R., & Knappe, D. (2017). Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PloS One, 12(6), e0178943.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zhang, X. F., Yang, G. Y., Zhang, Y., Xie, Y., Withers, S. G., & Feng, Y. (2016). A general and efficient strategy for generating the stable enzymes. Scientific Reports, 6(1), 1–12.

    CAS  Google Scholar 

  67. Dantas, R. C., Caetano, L. F., Torres, A. L., Alves, M. S., Silva, E. T., Teixeira, L. P., Teixeira, D. C., de AzevedoMoreira, R., Fonseca, M. H., Neto, S. G., Martins, L. T., Furtado, G. P., & Tavares, K. C. S. (2019). Expression of a recombinant bacterial l-asparaginase in human cells. BMC Research Notes, 12(1), 1–6.

    Article  CAS  Google Scholar 

  68. Frokjaer, S., & Otzen, D. E. (2005). Protein drug stability: A formulation challenge. Nature Reviews Drug Discovery, 4(4), 298–306.

    Article  CAS  PubMed  Google Scholar 

  69. Leuenberger, P., Ganscha, S., Kahraman, A., Cappelletti, V., Boersema, P. J., von Mering, C., Claassen, M., & Picotti, P. (2017). Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability. Science. https://doi.org/10.1126/science.aai7825

    Article  PubMed  Google Scholar 

  70. Rosa, M., Roberts, C. J., & Rodrigues, M. A. (2017). Connecting high-temperature and low-temperature protein stability and aggregation. PloS One, 12(5), e0176748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Kamal, M. Z., Ahmad, S., Molugu, T. R., Vijayalakshmi, A., Deshmukh, M. V., Sankaranarayanan, R., & Rao, N. M. (2011). In vitro evolved non-aggregating and thermostable lipase: Structural and thermodynamic investigation. Journal of Molecular Biology, 413(3), 726–741.

    Article  CAS  PubMed  Google Scholar 

  72. Taghizadeh, B., Taranejoo, S., Monemian, S. A., Salehi Moghaddam, Z., Daliri, K., Derakhshankhah, H., & Derakhshani, Z. (2015). Classification of stimuli–responsive polymers as anticancer drug delivery systems. Drug Delivery, 22(2), 145–155.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Shiraz University of Medical Sciences, Shiraz, Iran for the grant number 98-01-05-21235 and 18322.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiva Hemmati.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghian, I., Hemmati, S. Characterization of a Stable Form of Carboxypeptidase G2 (Glucarpidase), a Potential Biobetter Variant, From Acinetobacter sp. 263903-1. Mol Biotechnol 63, 1155–1168 (2021). https://doi.org/10.1007/s12033-021-00370-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00370-3

Keywords

Navigation