Skip to main content
Log in

A Study on the Bending Stiffness of a New DNA Origami Nano-Joint

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The present article aims to investigate the mechanical properties of a new DNA origami nano-joint using the steered molecular dynamics (SMD) simulation. Since the analysis of mechanical properties is of great importance in bending conditions for a nano-joint, the forces are selected to achieve angular changes in the joint by the resultant torque. In this study, the nano-joint is considered as a beam in order to use mechanical equations to extract the mechanical properties of the designed nano-joint. In addition, the bending stiffness of the beam is investigated in different modes of deflection using the Euler–Bernoulli beam theory. The results revealed that the value of bending stiffness increases with increasing deflection, and the changes in the bending stiffness relative to the deflection is linear. The proposed DNA origami nano-joint can be used as a joint in nanorobots and can be effectively applied in nanorobotic systems to move different components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cocco, S., Markob, J. F., & Monasson, R. (2002). Theoretical models for single-molecule DNA and RNA experiments: From elasticity to unzipping. Comptes Rendus Physique, 3, 569–584.

    Article  CAS  Google Scholar 

  2. Seeman, N. C. (2010). Nanomaterials based on DNA. Annual Review of Biochemistry, 79, 65–87.

    Article  CAS  Google Scholar 

  3. Han, D., Pal, S., Nangreave, J., Deng, Z., Liu, Y., & Yan, H. (2011). DNA origami with complex curvatures in three-dimensional space. Science, 332, 342–346.

    Article  CAS  Google Scholar 

  4. Rothemund, P. W. K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature, 440, 297–302.

    Article  CAS  Google Scholar 

  5. Castro, C. E., Kilchherr, F., Kim, D.-N., Shiao, E. L., Wauer, T., Wortmann, P., Bathe, M., & Dietz, H. (2011). A primer to scaffolded DNA origami. Nature Methods, 8, 221–229.

    Article  CAS  Google Scholar 

  6. Linko, V., & Dietz, H. (2013). The enabled state of DNA nanotechnology. Current Opinion in Biotechnology, 24, 555–561.

    Article  CAS  Google Scholar 

  7. Langecker, M., Arnaut, V., Martin, T. G., List, J., Renner, S., Mayer, M., Dietz, H., & Simmel, F. C. (2012). Synthetic lipid membrane channels formed by designed DNA nanostructures. Science, 338, 932–936.

    Article  CAS  Google Scholar 

  8. Khosravi, R., Ghasemi, R. H., & Soheilifard, R. (2020). Design and simulation of a DNA origami nanopore for large cargoes. Molecular Biotechnology, 62(9), 423–432.

    Article  CAS  Google Scholar 

  9. Douglas, S. M., Bachelet, I., & Church, G. M. (2012). A logic-gated nanorobot for targeted transport of molecular payloads. Science, 335, 831–834.

    Article  CAS  Google Scholar 

  10. Zadegan, R. M., Jepsen, M. D. E., Thomsen, K. E., Okholm, A. H., Schaffert, D. H., Andersen, E. S., Birkedal, V., & Kjems, J. (2012). Construction of a 4 zeptoliters switchable 3D DNA box origami. ACS Nano, 6, 10050–10053.

    Article  CAS  Google Scholar 

  11. Mogheiseh, M., Ghasemi, R. H., & Soheilifard, R. (2020). The effect of crossovers on the stability of DNA origami type nanocarriers. Multidiscipline Modeling in Materials and Structures, in press.

  12. Zhou, L., Marras, A. E., Su, H.-J., & Castro, C. E. (2014). DNA origami compliant nanostructures with tunable mechanical properties. ACS Nano, 8(1), 27–34.

    Article  CAS  Google Scholar 

  13. Tinland, B., Pluen, A., Sturm, J., & Weill, G. (1997). Persistence length of single-stranded DNA. Macromolecules, 30, 5763–5765.

    Article  CAS  Google Scholar 

  14. Wolfe, K. C., Hastings, W. A., Dutta, S., Long, A., Shapiro, B. A., Woolf, T. B., Guthold, M., & Chirikjian, G. S. (2012). Multiscale modeling of double-helical DNA and RNA: A unification through lie groups. The Journal of Physical Chemistry B, 116, 8556–8572.

    Article  CAS  Google Scholar 

  15. Marko, J. F., & Siggia, E. D. (1995). Stretching DNA. Macromolecules, 28, 8759–8770.

    Article  CAS  Google Scholar 

  16. Cohen, A. E., & Moerner, W. E. (2007). Principal-components analysis of shape fluctuations of single DNA molecules. Proceedings of the National academy of Sciences of the United States of America, 104, 12622–12627.

    Article  CAS  Google Scholar 

  17. Culpepper, M. L., DiBiasio, C. M., Panas, R. M., Magleby, S., & Howell, L. L. (2006). Simulation of a carbon nanotube-based compliant parallel-guiding mechanism: A nanomechanical building block. Applied Physics Letters, 89(20), 203111/1-203111/3.

    Article  CAS  Google Scholar 

  18. Magleby, S. P., Culpepper, M. L., Howell, L. L., Panas, R., & DiBiasio, C. M. (2008). Comparison of molecular simulation and pseudo-rigid-body model predictions for a carbon nanotube-based compliant parallel-guiding mechanism. Journal of Mechanical Design, 130, 042308/1-042308/7.

    Google Scholar 

  19. Howell, L. L., & Midha, A. (1994). A method for the design of compliant mechanisms with small-length flexural pivots. Journal of Mechanical Design, 116, 280–290.

    Article  Google Scholar 

  20. Howell, L. L. (2001). Compliant mechanisms (pp. 10–18). New York: Wiley-Interscience.

    Google Scholar 

  21. Marras, A. E., Zhou, L., Su, H.-J., & Castro, C. E. (2015). Programmable motion of DNA origami mechanisms. Proceedings of the National Academy of Sciences USA. https://doi.org/10.1073/pnas.1408869112

    Article  Google Scholar 

  22. Castro, C. E., Su, H.-J., Marras, A. E., Zhou, L., & Johnson, J. (2015). Mechanical design of DNA nanostructures. Nanoscale, 7(14), 5913–5921.

    Article  CAS  Google Scholar 

  23. Zhou, L. (2017). Design modeling and analysis of compliant and rigid-body DNA origami mechanisms’, PhD Thesis, The Ohio State University

  24. Dastorani, S., Mogheiseh, M., Ghasemi, R. H., & Soheilifard, R. (2020). Modeling and Structural investigation of a new DNA origami based flexible bio-nano joint. Molecular Simulation. https://doi.org/10.1080/08927022.2020.1797019

    Article  Google Scholar 

  25. Ghasemi, R. H., Keramati, M., & Mojarrad, M. H. S. (2019). The effect of structure on improvement of the PNA Young modulus: A study of steered molecular dynamics. Computational Biology and Chemistry, 83, 107–133.

    Article  Google Scholar 

  26. Peters, J. P., Yelgaonkar, S. P., Srivatsan, S. G., Tor, Y., & James Maher, L., III. (2013). Mechanical properties of DNA-like polymers. Nucleic Acids Research, 41, 10593–10604.

    Article  CAS  Google Scholar 

  27. Kim, Y. J., & Kim, D. N. (2016). Structural basis for elastic mechanical properties of the DNA double helix. PloS One, 11, e0153228.

    Article  Google Scholar 

  28. Kim, Y.-J., & Kim, D.-N. (2016). Sensitivity analysis for the mechanical properties of DNA bundles. Journal of Nanomaterials. https://doi.org/10.1155/2016/6287937

    Article  Google Scholar 

  29. Sevier, S. A. (2020). Mechanical properties of DNA replication. Physical Review Research, 2, 023280.

    Article  CAS  Google Scholar 

  30. Shrestha, P., Emura, T., Koirala, D., Cui, Y., Hidaka, K., Maximuck, W. J., Endo, M., Sugiyama, H., & Mao, H. (2016). Mechanical properties of DNA origami nanoassemblies are determined by holliday junction mechanophores. Nucleic Acids Research, 44, 6574–6582.

    Article  Google Scholar 

  31. Suma, A., Stopar, A., Nicholson, A. W., Castronovo, M., & Carnevale, V. (2020). Global and local mechanical properties control endonuclease reactivity of a DNA origami nanostructure. Nucleic Acids Research, 48, 4672.

    Article  CAS  Google Scholar 

  32. Helfrich, W. (1973). Elastic properties of lipid bilayers: Theory and possible experiments. Zeitschrift für Naturforschung C, 28(11), 693–703. https://doi.org/10.1515/znc-1973-11-1209

    Article  CAS  Google Scholar 

  33. Douglas, S. M., Marblestonen, A. H., Teerapittayanon, S., Vazquez, A., Church, G. M., & Shih, W. M. (2009). Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Research, 37(15), 5001–5006.

    Article  CAS  Google Scholar 

  34. Yoo, J., & Aksimentiev, A. (2013). In situ structure and dynamics of DNA origami determined through molecular dynamics simulations. Proceedings of the National Academy of Sciences USA, 110, 20099–20104.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Hasanzadeh Ghasemi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastorani, S., Ghasemi, R.H. & Soheilifard, R. A Study on the Bending Stiffness of a New DNA Origami Nano-Joint. Mol Biotechnol 63, 1057–1067 (2021). https://doi.org/10.1007/s12033-021-00367-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00367-y

Keywords

Navigation