Skip to main content
Log in

Autoinduction as Means for Optimization of the Heterologous Expression of Recombinant Single-Chain Fv (scFv) Antibodies

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The monoclonal antibodies and the recombinant antibody fragments are widely used in the biotechnology studies and in medicine as a powerful therapeutic and diagnostic tool. The most commonly used recombinant antibody fragments are single-chain fragment variable (scFv) because of their small size and minimal immunogenicity while still retaining high-affinity antigen binding. A wide range of expression systems such as bacterial and eukaryotic cell systems enable the sufficient production of scFv antibodies. However, their stable expression in soluble form and correct protein folding are often insufficient. In the present study, we present the autoinduction as a key element of the optimized scheme for heterologous expression of human monoclonal scFv antibodies (clones A1 and A12) in Escherichia coli HB2151, which resulted in two-fold increase of the total protein yield in 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors agree that the recombinant microbial strain of E. coli used in the article is available in a timely fashion at reasonable cost to members of the scientific community for non-commercial purposes, if necessary via an appropriate Materials Transfer Agreement between the interested parties.

Code Availability

Not applicable.

References

  1. Lu, R. M., Hwang, Y. C., Liu, I. J., Lee, C. C., Tsai, H. Z., Li, H. J., & Wu, H. C. (2020). Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science, 27(1), 1.

    Article  CAS  Google Scholar 

  2. Shen, Z., Yan, H., Zhang, Y., Mernaugh, R. L., & Zeng, X. (2008). Engineering peptide linkers for scFv immunosensors. Analytical Chemistry, 80(6), 1910–1917.

    Article  CAS  Google Scholar 

  3. Ahmad, Z. A., Yeap, S. K., Ali, A. M., Ho, W. Y., Alitheen, N. B., & Hamid, M. (2012). scFv antibody: Principles and clinical application. Clinical and Developmental Immunology, 2012, 980250.

    Article  Google Scholar 

  4. Monnier, P. P., Vigouroux, R. J., & Tassew, N. G. (2013). In vivo applications of single chain Fv (variable domain) (scFv) fragments. Antibodies, 2, 193–208.

    Article  CAS  Google Scholar 

  5. Wu, C. H., Liu, I. J., Lu, R. M., & Wu, H. C. (2016). Advancement and applications of peptide phage display technology in biomedical science. Journal of Biomedical Science, 23, 8.

    Article  Google Scholar 

  6. Almagro, J. C., Pedraza-Escalona, M., Arrieta, H. I., & Pérez-Tapia, S. M. (2019). Phage display libraries for antibody therapeutic discovery and development. Antibodies (Basel), 8(3), 44.

    Article  CAS  Google Scholar 

  7. Corchero, J. L., Gasser, B., Resina, D., Smith, W., Parrilli, E., Vázquez, F., Abasolo, I., Giuliani, M., Jäntti, J., Ferrer, P., Saloheimo, M., Mattanovich, D., Schwartz, S., Jr., Luisa Tutino, M., & Villaverde, A. (2013). Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnology Advances, 31(2), 140–153. https://doi.org/10.1016/j.biotechadv.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  8. Frenzel, A., Hust, M., & Schirrmann, T. (2013). Expression of recombinant antibodies. Frontiers in Immunology, 4, 217.

    Article  Google Scholar 

  9. Terpe, K. (2006). Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 72(2), 211–222.

    Article  CAS  Google Scholar 

  10. Ni, Y., & Chen, R. (2009). Extracellular recombinant protein production from Escherichia coli. Biotechnology Letters, 31(11), 1661–1670.

    Article  CAS  Google Scholar 

  11. Fernandes, J. C. (2018). Therapeutic application of antibody fragments in autoimmune diseases: Current state and prospects. Drug Discovery Today, 23, 1996–2002. https://doi.org/10.1016/j.drudis.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  12. Baneyx, F., & Mujacic, M. (2004). Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology, 22(11), 1399–1408.

    Article  CAS  Google Scholar 

  13. Burgess, R. R. (2009). Refolding solubilized inclusion body proteins. Methods in Enzymology, 463, 259–282.

    Article  CAS  Google Scholar 

  14. Deliyska, B., Tsacheva, I., Radanova, M., Stoianova, V., Tchorbadjieva, M., & Dobreva, N. (2007). Lupus nephritis sera contain autoantibodies that recognize epitopes within the globular fragment of C1q. Medicinski Pregled, 60(Suppl 2), 25–27.

    PubMed  Google Scholar 

  15. Stoyanova, V., Tchorbadjieva, M., Deliyska, B., Vasilev, V., & Tsacheva, I. (2012). Biochemical analysis of the epitope specificities of anti-C1q autoantibodies accompanying human lupus nephritis reveals them as a dynamic population in the course of the disease. Immunology Letters, 148(1), 69–76. https://doi.org/10.1016/j.imlet.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  16. Rangelov, M. A., Todorova, N. H., & Tsacheva, I. G. (2017). In silico investigation of single-chain variable fragment (scFv) antibody, structurally similar to native C1q globular heads. Bulgarian Chemical Communications, Special Issue E, 49, 50–53.

    Google Scholar 

  17. Studier, F. W. (2005). Protein production by autoinduction in high density shaking cultures. Protein Expression and Purification, 41(1), 207–234.

    Article  CAS  Google Scholar 

  18. Miller, K. D., Weaver-Feldhaus, J., Gray, S. A., Siegel, R. W., & Feldhaus, M. J. (2005). Production, purification, and characterization of human scFv antibodies expressed in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli. Protein Expression and Purification, 42(2), 255–267.

    Article  CAS  Google Scholar 

  19. Chen, R. (2012). Bacterial expression systems for recombinant protein production E. coli and beyond. Biotechnology Advances, 30, 1102–1107.

    Article  CAS  Google Scholar 

  20. Miethe, S., Meyer, T., Wöhl-Bruhn, S., Frenzel, A., Schirrmann, T., Dübel, S., & Hust, M. (2013). Production of single chain fragment variable (scFv) antibodies in Escherichia coli using the LEX™ bioreactor. Journal of Biotechnology, 163, 105–111.

    Article  CAS  Google Scholar 

  21. Donev, V., & Tsacheva, I. (2019). Autoinduction of the expression of the recombinant forms of the three globular fragments constituting gC1 q. Comptes rendus de l’Academie bulgare des Sciences, 72(5), 622–626.

    CAS  Google Scholar 

  22. Martin, C. D., Rojas, G., Mitchell, J. N., Vincent, K. J., Wu, J., McCafferty, J., & Schofield, D. J. (2006). A simple vector system to improve performance and utilisation of recombinant antibodies. BMC Biotechnology, 6, 46.

    Article  Google Scholar 

  23. Carpenter, J. F., Manning, M. C., & Randolph, T. W. (2002). Long-term storage of proteins. Current Protocols in Protein Science, 27, 4.6.1–4.6.6. https://doi.org/10.1002/0471140864.ps0406s27

    Article  Google Scholar 

  24. Gil, D., & Schrum, A. G. (2013). Strategies to stabilize compact folding and minimize aggregation of antibody-based fragments. Advances in Bioscience and Biotechnology, 4(4a), 73–84.

    Article  Google Scholar 

  25. Mascarenhas, N. M., & Gosavi, S. (2017). Understanding protein domain-swapping using structure-based models of protein folding. Progress in Biophysics and Molecular Biology, 128, 113–120.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The presented experimental work was financed by Grant DN01/9 of the National Science Fund of the Bulgarian Ministry for Education and Science.

Funding

This work was financed by Grant DN01/9 of the National Science Fund (NSF) of the Bulgarian Ministry for Education and Science.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Experimental design was made by IT. Material preparation, data collection and analysis were performed by GN, YG, AA and GR. The first draft of the manuscript was written by GN and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ivanka Tsacheva.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article. The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolova, G., Georgieva, Y., Atanasova, A. et al. Autoinduction as Means for Optimization of the Heterologous Expression of Recombinant Single-Chain Fv (scFv) Antibodies. Mol Biotechnol 63, 1049–1056 (2021). https://doi.org/10.1007/s12033-021-00363-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00363-2

Keywords

Navigation