Skip to main content
Log in

Biochemical Characterization of Acyl-CoA: Lysophosphatidylcholine Acyltransferase (LPCAT) Enzyme from the Seeds of Salvia hispanica

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Salvia hispanica (chia) is the highest reported terrestrial plant source of alpha-linolenic acid (ALA, ~ 65%), an ω-3 polyunsaturated fatty acid with numerous health benefits. The molecular basis of high ALA accumulation in chia is yet to be understood. We have identified lysophosphatidylcholine acyltransferase (LPCAT) gene from the developing seed transcriptome data of chia and carried out its biochemical characterization through heterologous expression in Saccharomyces cerevisiae. Expression profiling showed that the enzyme was active throughout the seed development, indicating a pivotal role in oil biosynthesis. The enzyme could utilize both saturated and unsaturated lysophosphatidylcholine substrates at the same rate, to synthesize phosphatidylcholine (PC). The enzyme also exhibited lysophosphatidic acid acyltransferase (LPAAT) activity, by preferring lysophosphatidic acid substrate. Substrate specificity studies showed that the enzyme preferred both monounsaturated and polyunsaturated fatty acyl CoAs over saturated CoAs. This activity may play a key role in enriching the PC fraction with polyunsaturated fatty acids (PUFAs). PUFAs present on PC can be transferred to oil through the action of other acyltransferases. Our results describe a new LPCAT enzyme that can be used to biotechnologically alter oilseed crops to incorporate more PUFA in its seed oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Exton, J. H. (1990). Signaling through phosphatidylcholine breakdown. Journal of Biological Chemistry, 265(1), 1–4.

    Article  CAS  Google Scholar 

  2. Kent, C., & Carman, G. M. (1999). Interactions among pathways for phosphatidylcholine metabolism, CTP synthesis and secretion through the Golgi apparatus. Trends in biochemical sciences, 24(4), 146–150.

    Article  CAS  Google Scholar 

  3. Bates, P. D., & Browse, J. (2011). The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds. The Plant Journal, 68(3), 387–399.

    Article  CAS  Google Scholar 

  4. Myher, J. J., Kuksis, A., & Pind, S. (1989). Molecular species of glycerophospholipids and sphingomyelins of human erythrocytes: Improved method of analysis. Lipids, 24(5), 396–407.

    Article  CAS  Google Scholar 

  5. Bao, X., Pollard, M., & Ohlrogge, J. (1998). The biosynthesis of erucic acid in developing embryos of Brassica rapa. Plant physiology, 118(1), 183–190.

    Article  CAS  Google Scholar 

  6. Lands, W. E. (1965). Lipid metabolism. Annual review of biochemistry, 34(1), 313–346.

    Article  CAS  Google Scholar 

  7. Stymne, S., & Stobart, A. K. (1984). Evidence for the reversibility of the acyl-CoA: Lysophosphatidylcholine acyltransferase in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons and rat liver. Biochemical Journal, 223(2), 305–314.

    Article  CAS  Google Scholar 

  8. Chen, Q., Kazachkov, M., Zheng, Z., & Zou, J. (2007). The yeast acylglycerol acyltransferase LCA1 is a key component of Lands cycle for phosphatidylcholine turnover. FEBS letters, 581(28), 5511–5516.

    Article  CAS  Google Scholar 

  9. Kazachkov, M., Chen, Q., Wang, L., & Zou, J. (2008). Substrate preferences of a lysophosphatidylcholine acyltransferase highlight its role in phospholipid remodeling. Lipids, 43(10), 895–902.

    Article  CAS  Google Scholar 

  10. Zhao, Y., Chen, Y. Q., Bonacci, T. M., Bredt, D. S., Li, S., Bensch, W. R., Moller, D. E., Kowala, M., Konrad, R. J., & Cao, G. (2008). Identification and characterization of a major liver lysophosphatidylcholine acyltransferase. Journal of Biological Chemistry, 283(13), 8258–8265.

    Article  CAS  Google Scholar 

  11. Harayama, T., Shindou, H., Ogasawara, R., Suwabe, A., & Shimizu, T. (2008). Identification of a novel noninflammatory biosynthetic pathway of platelet-activating factor. Journal of Biological Chemistry, 283(17), 11097–11106.

    Article  CAS  Google Scholar 

  12. Wang, L., Shen, W., Kazachkov, M., Chen, G., Chen, Q., Carlsson, A. S., Stymne, S., Weselake, R. J., & Zou, J. (2012). Metabolic interactions between the lands cycle and the Kennedy pathway of glycerolipid synthesis in Arabidopsis developing seeds. The Plant Cell, 24(11), 4652–4669.

    Article  CAS  Google Scholar 

  13. Zheng, Q., Li, J. Q., Kazachkov, M., Liu, K., & Zou, J. (2012). Identification of Brassica napus lysophosphatidylcholine acyltransferase genes through yeast functional screening. Phytochemistry, 75, 21–31.

    Article  CAS  Google Scholar 

  14. Zhang, D., Jasieniecka-Gazarkiewicz, K., Wan, X., Luo, L., Zhang, Y., Banas, A., Jiang, M., & Gong, Y. (2015). Molecular characterization of two lysophospholipid: Acyl-CoA acyltransferases belonging to the MBOAT family in Nicotiana benthamiana. PLoS ONE. https://doi.org/10.1371/journal.pone.0144653

    Article  PubMed  PubMed Central  Google Scholar 

  15. Arroyo-Caro, J. M., Chileh, T., Alonso, D. L., & García-Maroto, F. (2013). Molecular characterization of a lysophosphatidylcholine acyltransferase gene belonging to the MBOAT family in Ricinus communis L. Lipids, 48(7), 663–674.

    Article  CAS  Google Scholar 

  16. Xu, J., Carlsson, A. S., Francis, T., Zhang, M., Hoffman, T., Giblin, M. E., & Taylor, D. C. (2012). Triacylglycerol synthesis by PDAT1 in the absence of DGAT1 activity is dependent on re-acylation of LPC by LPCAT2. BMC plant biology, 12(1), 4.

    Article  CAS  Google Scholar 

  17. Bates, P. D., Fatihi, A., Snapp, A. R., Carlsson, A. S., Browse, J., & Lu, C. (2012). Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. Plant physiology, 160(3), 1530–1539.

    Article  CAS  Google Scholar 

  18. Sreedhar, R. V., Kumari, P., Rupwate, S. D., Rajasekharan, R., & Srinivasan, M. (2015). Exploring triacylglycerol biosynthetic pathway in developing seeds of Chia (Salvia hispanica L.): A transcriptomic approach. PLoS ONE. https://doi.org/10.1371/journal.pone.0123580

    Article  Google Scholar 

  19. Gopalam, R., Rupwate, S. D., & Tumaney, A. W. (2017). Selection and validation of appropriate reference genes for quantitative real-time PCR analysis in Salvia hispanica. PLoS ONE, 12(11), e0186978.

    Article  Google Scholar 

  20. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408.

    Article  CAS  Google Scholar 

  21. Gietz, R. D., & Schiestl, R. H. (2007). High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature protocols, 2(1), 31–34.

    Article  CAS  Google Scholar 

  22. Dahlqvist, A., Ståhl, U., Lenman, M., Banas, A., Lee, M., Sandager, L., Ronne, H., & Stymne, S. (2000). Phospholipid: Diacylglycerol acyltransferase: An enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proceedings of the National Academy of Sciences USA, 97(12), 6487–6492.

    Article  CAS  Google Scholar 

  23. Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C. J., Lu, S., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., & Gwadz, M. (2017). CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic acids research, 45(D1), D200–D203.

    Article  CAS  Google Scholar 

  24. Mapelli-Brahm, A., Sánchez, R., Pan, X., Moreno-Pérez, A. J., Garcés, R., Martínez-Force, E., Weselake, R. J., Salas, J. J., & Venegas-Calerón, M. (2020). Functional characterization of lysophosphatidylcholine: Acyl-CoA acyltransferase genes from sunflower (Helianthus annuus L.). Frontiers in Plant Science, 11, 403.

    Article  Google Scholar 

  25. Venkateshwari, V., Vijayakumar, A., Vijayakumar, A. K., Reddy, L. P. A., Srinivasan, M., & Rajasekharan, R. (2018). Leaf lipidome and transcriptome profiling of Portulaca oleracea: Characterization of lysophosphatidylcholine acyltransferase. Planta, 248(2), 347–367.

    Article  CAS  Google Scholar 

  26. Gopalam, R., & Tumaney, A. W. (2021). Functional characterization of acyltransferases from Salvia hispanica that can selectively catalyze the formation of trilinolenin. Phytochemistry, 186, 112712.

    Article  CAS  Google Scholar 

  27. Zaremberg, V., & McMaster, C. R. (2002). Differential partitioning of lipids metabolized by separate yeast glycerol-3-phosphate acyltransferases reveals that phospholipase D generation of phosphatidic acid mediates sensitivity to choline-containing lysolipids and drugs. Journal of Biological Chemistry, 277(41), 39035–39044.

    Article  CAS  Google Scholar 

  28. Ståhl, U., Stålberg, K., Stymne, S., & Ronne, H. (2008). A family of eukaryotic lysophospholipid acyltransferases with broad specificity. FEBS letters, 582(2), 305–309.

    Article  Google Scholar 

  29. Lager, I., Yilmaz, J. L., Zhou, X. R., Jasieniecka, K., Kazachkov, M., Wang, P., & P., Zou, J., Weselake, R., Smith, M.A., Bayon, S & Dyer, J. M. . (2013). Plant acyl-CoA: Lysophosphatidylcholine acyltransferases (LPCATs) have different specificities in their forward and reverse reactions. Journal of Biological Chemistry, 288(52), 36902–36914.

    Article  CAS  Google Scholar 

  30. Tocher, D. R. (1998). Recent advances in the biochemistry and molecular biology of fatty acyl desaturases. Progress in Lipid Research, 37, 73–117.

    Article  CAS  Google Scholar 

  31. Stymne, S. T. E. N., & STOBART, A. K. (1987). Triacylglycerol biosynthesis. Lipids: structure and function (pp. 175–214). Academic Press.

    Google Scholar 

Download references

Acknowledgements

The authors thank the Director, CSIR-CFTRI, Mysuru for the facilities provided. The research work is financially supported by DST-SERB, under the project (EEQ/2016/000531). Rahul Gopalam is thankful to CSIR-UGC, New Delhi for providing fellowship.

Author information

Authors and Affiliations

Authors

Contributions

RG and AWT planned and designed experiments. RG, AD and SB performed the experiments. RG, DC AWT analyzed the data; RG prepared the original draft; All the authors reviewed, edited and finalized the final manuscript.

Corresponding author

Correspondence to Ajay W. Tumaney.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalam, R., Datey, A., Bijoor, S. et al. Biochemical Characterization of Acyl-CoA: Lysophosphatidylcholine Acyltransferase (LPCAT) Enzyme from the Seeds of Salvia hispanica. Mol Biotechnol 63, 963–972 (2021). https://doi.org/10.1007/s12033-021-00354-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00354-3

Keywords

Navigation