Skip to main content
Log in

MicroRNA miR-29a Inhibits Colon Cancer Progression by Downregulating B7-H3 Expression: Potential Molecular Targets for Colon Cancer Therapy

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

MiR-29a belongs to one of the subtypes of miRNAs known as non-coding single-stranded RNAs and is preferentially expressed in normal tissues. B7-H3, a member of the B7/CD28 immunoglobulin superfamily, was shown to be overexpressed in several solid malignant tumors, including colon cancer. In addition, it is associated with tumor progression and poor prognosis. We used immunohistochemical and Western blotting to assess B7-H3 protein expression levels in colon cancer and adjacent normal tissues and then compared their relationships with clinicopathological factors. Quantitative real-time reverse-transcription PCR was used to assess B7-H3 and miRNA-29a mRNA expression levels, and then their relationship and clinical significance were evaluated. In addition, colon cancer Caco-2 cells, which constitutively overexpress B7-H3, were transfected with lentivirus particles for miR-29a upregulation. Invasion and migration assays were carried out in vitro along with the establishment of a subcutaneous xenograft model in vivo to determine the role of miRNA-29a in colon cancer progression. The B7-H3 protein showed elevated expression in colon carcinoma and was relevant to TNM staging, lymph node metastasis, and reduced survival. Meanwhile, miR-29a was preferentially expressed in normal colon tissues, while B7-H3 transcript levels had no marked differences between tumor and normal tissue specimens. In vitro, miR-29a upregulation resulted in reduced B7-H3 expression. Furthermore, miR-29a upregulation reduced the invasive and migratory abilities of colon carcinoma cells. In animal models, upregulation of miR-29a slowed down the growth of subcutaneous xenotransplanted tumors and resulted in prolonged survival time. MiR-29a downregulates B7-H3 expression and accordingly inhibits colon cancer progression, invasion, and migration, indicating miR-29a and B7-H3 might represent novel molecular targets for advanced immunotherapy in colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kannan, Thanikachalam, Khan, Gazala, et al. (2019). Colorectal Cancer and Nutrition[J]. Nutrients, 11(1), 164.

    Article  CAS  Google Scholar 

  2. Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 68(6), 394–424.

    Google Scholar 

  3. Chow, C. J., Al-Refaie, W. B., Abraham, A., et al. (2015). Does patient rurality predict quality colon cancer care: A population-based study[J]. Diseases of the Colon and Rectum, 58(4), 415–422.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Galanternik, F., Recondo, G., Valsecchi, M. E., et al. (2016). What is the Current Role of Immunotherapy for Colon Cancer?[J]. Reviews on Recent Clinical Trials, 11(2), 93–98.

    Article  CAS  PubMed  Google Scholar 

  5. Ferlay, J., Colombet, M., Soerjomataram, I., et al. (2019). Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. International Journal of Cancer, 144(8), 1941–1953.

    Article  CAS  PubMed  Google Scholar 

  6. Mao, Y., Chen, L., Wang, F., et al. (2017). Cancer cell-expressed B7–H3 regulates the differentiation of tumor-associated macrophages in human colorectal carcinoma[J]. Oncology Letters, 14(5), 6177–6183.

    PubMed  PubMed Central  Google Scholar 

  7. Castriconi, R., Dondero, A., Augugliaro, R., et al. (2004). Identification of 4Ig-B7-H3 as a neuroblastoma-associated molecule that exerts a protective role from an NK cell-mediated lysis[J]. Proc Natl Acad Sci U S A, 101(34), 12640–12645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Steinberger, P., Majdic, O., Derdak, S. V., et al. (2004). Molecular Characterization of Human 4Ig-B7-H3, a Member of the B7 Family with Four Ig-Like Domains[J]. The Journal of Immunology, 172(4), 2352–2359.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, G., Hou, J., Shi, J., et al. (2008). Soluble CD276 (B7–H3) is released from monocytes, dendritic cells and activated T?cells and is detectable in normal human serum[J]. Immunology, 123(4), 538–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Du, H., Hirabayashi, K., Ahn, S., et al. (2019). Antitumor Responses in the Absence of Toxicity in Solid Tumors by Targeting B7–H3 Via Chimeric Antigen Receptor T Cells[J]. Social Science Electronic Publishing, 35(2), 221–237.

    CAS  Google Scholar 

  11. Maeda, N., Yoshimura, K., Yamamoto, S., et al. (2014). Expression of B7–H3, a potential factor of tumor immune evasion in combination with the number of regulatory T cells, affects against recurrence-free survival in breast cancer patients. Ann Surg Oncol., 21(Suppl 4), S546–S554.

    Article  PubMed  Google Scholar 

  12. Sun, J., Chen, L. J., Zhang, G. B., et al. (2010). Clinical significance and regulation of the costimulatory molecule B7–H3 in human colorectal carcinoma[J]. Cancer Immunology, Immunotherapy, 59(8), 1163–1171.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, X., Li, D. C., Zhu, X. G., et al. (2013). B7–H3 overexpression in pancreatic cancer promotes tumor progression[J]. International Journal of Molecular Medicine, 31(2), 283–291.

    Article  CAS  PubMed  Google Scholar 

  14. Dai, W., Shen, G., Qiu, J., et al. (2014). Aberrant expression of B7–H3 in gastric adenocarcinoma promotes cancer cell metastasis[J]. Oncology Reports, 32(5), 2086–2092.

    Article  CAS  PubMed  Google Scholar 

  15. Nygren, M. K., Tekle, C., Ingebrigtsen, V. A., et al. (2014). Identifying microRNAs regulating B7–H3 in breast cancer: The clinical impact of microRNA-29c[J]. British Journal of Cancer, 110(8), 2072–2080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, L., Zhang, Q., Chen, W., et al. (2013). B7–H3 is Overexpressed in Patients Suffering Osteosarcoma and Associated with Tumor Aggressiveness and Metastasis[J]. Plos One, 8(8), e70689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Di, L. G., Garofalo, M., & Croce, C. M. (2014). MicroRNAs in cancer[J]. Annual Review of Pathology: Mechanisms of Disease, 9(2), 287–314.

    Google Scholar 

  18. ErsonBensan, A. E. (2014). Introduction to microRNAs in biological systems[J]. Methods in Molecular Biology, 1107(1107), 1–14.

    CAS  Google Scholar 

  19. Perge, P., Nagy, Z., Igaz, I., et al. (2015). Suggested roles for microRNA in tumors[J]. Biomolecular Concepts, 6(2), 149–155.

    Article  CAS  PubMed  Google Scholar 

  20. Xu, H., Cheung, I. Y., Guo, H. F., et al. (2009). MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7–H3: Potential implications for immune based therapy of human solid tumors[J]. Cancer Research, 69(15), 6275–6281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weissmann-Brenner, A., Kushnir, M., Lithwick, Y. G., et al. (2012). Tumor microRNA-29a expression and the risk of recurrence in stage II colon cancer[J]. International Journal of Oncology, 40(6), 2097–2103.

    CAS  PubMed  Google Scholar 

  22. Han, C., Chen, X., Zhuang, R., et al. (2015). miR-29a promotes myocardial cell apoptosis induced by high glucose through down-regulating IGF-1[J]. International Journal of Clinical and Experimental Medicine, 8(8), 14352–14362.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chapoval, A. I., Ni, J., Lau, J. S., et al. (2001). B7–H3: A costimulatory molecule for T cell activation and IFN-gamma production[J]. Nature Immunology, 2(3), 269–274.

    Article  CAS  PubMed  Google Scholar 

  24. Suh, W. K., Gajewska, B. U., Okada, H., et al. (2003). The B7 family member B7–H3 preferentially down-regulates T helper type 1-mediated immune responses[J]. Nature Immunology, 4(9), 899–906.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, Y. W., Tekle, C., & Fodstad, O. (2008). The immunoregulatory protein human B7H3 is a tumor-associated antigen that regulates tumor cell migration and invasion[J]. Current Cancer Drug Targets, 8(5), 404–413.

    Article  CAS  PubMed  Google Scholar 

  26. Bartel, D. P., & Chen, C. Z. (2004). Micromanagers of gene expression: The potentially widespread influence of metazoan microRNAs[J]. Nature Reviews Genetics, 5(5), 396–400.

    Article  CAS  PubMed  Google Scholar 

  27. Ingebrigtsen, V. A., Boye, K., Nesland, J. M., et al. (2014). B7–H3 expression in colorectal cancer: Associations with clinicopathological parameters and patient outcome[J]. BMC Cancer, 14(1), 602.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pasqualini, L., Bu, H., Puhr, M., et al. (2015). miR-22 and miR-29a Are Members of the Androgen Receptor Cistrome Modulating LAMC1 and Mcl-1 in Prostate Cancer[J]. Molecular Endocrinology, 29(7), 1037–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tréhoux, S., Lahdaoui, F., Delpu, Y., et al. (2015). Micro-RNAs miR-29a and miR-330-5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells[J]. Biochimica et Biophysica Acta, 1853(10), 2392–2403.

    Article  PubMed  CAS  Google Scholar 

  30. Ling, C., Hong, X., Wang, Z. H., et al. (2014). miR-29a suppresses growth and invasion of gastric cancer cells in vitro by targeting VEGF-A[J]. Bmb Reports, 47(1), 39–44.

    Article  CAS  Google Scholar 

  31. Brunet, A. (2013). microRNA expression profile in stage III colorectal cancer: Circulating miR-18a and miR-29a as promising biomarkers[J]. Oncology Reports, 30(1), 320–326.

    Article  CAS  Google Scholar 

  32. Huang, Z., Huang, D., Ni, S., et al. (2010). Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer[J]. International Journal of Cancer, 127(1), 118–126.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, L. G., & Gu, J. (2012). Serum microRNA-29a is a promising novel marker for early detection of colorectal liver metastasis[J]. Cancer Epidemiology, 36(1), e61-67.

    Article  CAS  PubMed  Google Scholar 

  34. Ryo, U., Yuji, T., Takahito, K., et al. (2016). Diagnostic Potential of Cell-Free and Exosomal MicroRNAs in the Identification of Patients with High-Risk Colorectal Adenomas[J]. PLOS One, 11(10), e0160722.

    Article  CAS  Google Scholar 

  35. Soria, G., Ofri-Shahak, M., Haas, I., et al. (2011). Inflammatory mediators in breast cancer: Coordinated expression of TNF-α & IL-1β with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition[J]. BMC Cancer, 11, 130–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang, L., Wang, X., Wen, C., et al. (2015). Hsa-miR-19a is associated with lymph metastasis and mediates the TNF-α induced epithelial-to-mesenchymal transition in colorectal cancer[J]. Sci Rep, 5, 13350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Simone, V., Franzè, E., Ronchetti, G., et al. (2015). Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth[J]. Oncogene, 34(27), 3493–3503.

    Article  PubMed  CAS  Google Scholar 

  38. Kratochvill, F., Neale, G., Haverkamp, J. M., et al. (2015). TNF Counterbalances the Emergence of M2 Tumor Macrophages[J]. Cell Rep, 12(11), 1902–1914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kang, F. B., Wang, L., Li, D., et al. (2015). Hepatocellular carcinomas promote tumor-associated macrophage M2-polarization via increased B7–H3 expression[J]. Oncology Reports, 33(1), 274–282.

    Article  CAS  PubMed  Google Scholar 

  40. Yang, G., Xiao, X., Rosen, D. G., et al. (2011). The biphasic role of NF-κB in Pro⁃gression and Chemoresistance of ovarian cancer[J]. Clin Cancer Res, 17(8), 2181–2194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zwacka, R. M., Stark, L., & Dunlop, M. G. (2000). NF-kappaB kinetics predetermine TNF-alpha sensitivity of colorectal cancer cells[J]. The Journal of Gene Medicine, 2(5), 334–343.

    Article  CAS  PubMed  Google Scholar 

  42. Zhuang, X., Shen, J., Jia, Z., et al. (2016). Anti-B7-H3 monoclonal antibody ameliorates the damage of acute experimental pancreatitis by attenuating the inflammatory response[J]. International Immunopharmacology, 35, 1–6.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, H., Garzon, R., Sun, H., et al. (2008). NF-κB-YY1-miR-29 Regulatory Circuitry in Skeletal Myogenesis and Rhabdomyosarcoma[J]. Cancer Cell, 14(5), 369–381.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We had submitted our article to a pre-print server which can be accessed at https://www.researchsquare.com/article/rs-68497/v1. This study was supported by grants from the National Science Foundation of China (NSFC, No. 31770985, No. 82073180), Jiangsu Provincial Key Research and Development Program, China (No. BE2019665), Jiangsu Provincial Medical Youth Talent, China (No. QNRC2016732), Jiangsu Provincial “ Six Peaks Talent ” Program, China (No. 2016-WSW-043), Suzhou Municipal Project of Gusu Health Talent, Young Top Talent, China (No. 2018-057), Gusu Health Talents Cultivation Program, China (No. GSWS2019028), Scientific Research Program of Jiangsu Provincial “333 Talents Projects”, China (No. BRA2019327), and Science and Technology Program of Suzhou City, China (No. SYS2019053, No. SLC201906).

Author information

Authors and Affiliations

Authors

Contributions

XZ and JZ proposed the research project and are the guarantors. JW drafted the manuscript. JW, XC, and CX had equal contributions to the current work. All authors were involved in study design and data interpretation and have reviewed the final version of the manuscript.

Corresponding authors

Correspondence to Jianglei Zhang or Xin Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest concerning the content of the present article.

Ethical Approval

Written informed consent was obtained from all patients and the present study had approval from the Ethics Committee of First Affiliated Hospital of Soochow University. All experiments were performed in accordance with relevant guidelines and regulations. The animal studies were carried out at Laboratory Animal Center of Soochow University and performed according to a protocol approved by the animal care and use committee of Soochow University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, X., Xie, C. et al. MicroRNA miR-29a Inhibits Colon Cancer Progression by Downregulating B7-H3 Expression: Potential Molecular Targets for Colon Cancer Therapy. Mol Biotechnol 63, 849–861 (2021). https://doi.org/10.1007/s12033-021-00348-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00348-1

Keywords

Navigation