Skip to main content

Advertisement

Log in

Fabrication and Characterization of Nanofibrous Poly (L-Lactic Acid)/Chitosan-Based Scaffold by Liquid–Liquid Phase Separation Technique for Nerve Tissue Engineering

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Fabrication method is one of the essential factors which directly affect on the properties of scaffold. Several techniques have been well established to fabricate nanofibrous scaffolds such as electrospinning. However, preparing a three-dimensional (3-D) interconnected macro-pore scaffold essential for transporting the cell metabolites and nutrients is difficult using the electrospinning method. The main aim of this study was developing a highly porous scaffold by poly (L-lactic acid) (PLLA)/chitosan blend using liquid–liquid phase separation (LLPS) technique, a fast and cost–benefit method, in order to use in nerve tissue engineering. In addition, the effect of different polymeric concentrations on morphology, mechanical properties, hydrophilicity, in vitro degradation rate and pH alteration of the scaffolds were evaluated. Moreover, cell attachment, cell viability and cell proliferation of scaffolds as candidates for nerve tissue engineering was investigated. PLLA/chitosan blend not only had desirable structural properties, porosity, hydrophilicity, mechanical properties, degradation rate and pH alteration but also provided a favorable environment for attachment, viability, and proliferation of human neuroblastoma cells, exhibiting significant potential for nerve tissue engineering applications. However, the polymeric concentration in blend fabrication had influence on both characteristics and cell responses. It concluded that PLLA/chitosan nanofibrous 3-D scaffold fabricated by LLPS method as a suitable candidate for nerve tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bastami, F., & Khojasteh, A. (2016). Use of leukocyte-and platelet-rich fibrin for bone regeneration: a systematic review regeneratio. Regeneration Reconstruction & Restoration, 1, 47–68.

    Google Scholar 

  2. Bastami, F., Paknejad, Z., Jafari, M., Salehi, M., Rad, M. R., & Khojasteh, A. (2016). Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering. Materials Science and Engineering C, 72, 481–491.

    Article  Google Scholar 

  3. Bastami, F., Vares, P., & Khojasteh, A. (2016). Healing Effects of Platelet-Rich Plasma on Peripheral Nerve Injuries. Journal of Craniofacial Surgery, 28(1), 49–57.

    Article  Google Scholar 

  4. Bastami, F., Vares, P., & Khojasteh, A. (2017). Healing effects of platelet-rich plasma on peripheral nerve injuries. Journal of Craniofacial Surgery, 28, e49–e57.

    Article  Google Scholar 

  5. Carrubba, V., Pavia, F. C., Brucato, V., & Piccarolo, S. (2008). PLLA/PLA scaffolds prepared via thermally induced phase separation (TIPS): Tuning of properties and biodegradability. International Journal of Material Forming, 1, 619–622. https://doi.org/10.1007/s12289-008-0332-5

    Article  Google Scholar 

  6. Chen, C., Dong, L., & Cheung, M. K. (2005). Preparation and characterization of biodegradable poly(l-lactide)/chitosan blends. European Polymer Journal, 41, 958–966. https://doi.org/10.1016/j.eurpolymj.2004.12.002

    Article  CAS  Google Scholar 

  7. Chen, L., et al. (2013). Electrospun poly (L-lactide)/poly (ε-caprolactone) blend nanofibrous scaffold: characterization and biocompatibility with human adipose-derived stem cells. PLoS ONE, 8(8), e71265.

    Article  CAS  Google Scholar 

  8. Chen, S., He, Z., Xu, G., & Xiao, X. (2016). Fabrication and characterization of modified nanofibrous poly (L-lactic acid) scaffolds by thermally induced phase separation technique and aminolysis for promoting cyctocompatibility. Journal of Biomaterials Science Polymer Edition, 27, 1058–1068.

    Article  CAS  Google Scholar 

  9. Chen, S., Zhao, X., & Du, C. (2018). Macroporous poly (l-lactic acid)/chitosan nanofibrous scaffolds through cloud point thermally induced phase separation for enhanced bone regeneration. European Polymer Journal, 109, 303–316.

    Article  CAS  Google Scholar 

  10. Dahlin, L., Johansson, F., Lindwall, C., & Kanje, M. (2009). Future perspective in peripheral nerve reconstruction. International Review of Neurobiology, 87, 507–530.

    Article  CAS  Google Scholar 

  11. Duarte, A. R. C., Mano, J. F., & Reis, R. L. (2010). Novel 3D scaffolds of chitosan–PLLA blends for tissue engineering applications: Preparation and characterization. The Journal of Supercritical Fluids, 54, 282–289. https://doi.org/10.1016/j.supflu.2010.05.017

    Article  CAS  Google Scholar 

  12. Edlund, U., Sauter, T., & Albertsson, A. C. (2011). Covalent VEGF protein immobilization on resorbable polymeric surfaces. Polymers for Advanced Technologies, 22, 166–171.

    Article  CAS  Google Scholar 

  13. Evans, G. R. (2001). Peripheral nerve injury: A review and approach to tissue engineered constructs. The Anatomical Record, 263, 396–404.

    Article  CAS  Google Scholar 

  14. Farokhi, M., Mottaghitalab, F., Shokrgozar, M. A., Kaplan, D. L., Kim, H.-W., & Kundu, S. C. (2017). Prospects of peripheral nerve tissue engineering using nerve guide conduits based on silk fibroin protein and other biopolymers. International Materials Reviews, 62, 367–391.

    Article  CAS  Google Scholar 

  15. Ghasemi-Mobarakeh, L., Prabhakaran, M. P., Morshed, M., Nasr-Esfahani, M.-H., & Ramakrishna, S. (2008). Electrospun poly (ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials, 29, 4532–4539.

    Article  CAS  Google Scholar 

  16. Ghasemi-Mobarakeh, L., Prabhakaran, M. P., Morshed, M., Nasr-Esfahani, M.-H., & Ramakrishna, S. (2008). Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials, 29, 4532–4539. https://doi.org/10.1016/j.biomaterials.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  17. Habre, S. B., Bond, G., Jing, X. L., Kostopoulos, E., Wallace, R. D., & Konofaos, P. (2018). The surgical management of nerve gaps: Present and future. Annals of Plastic Surgery, 80, 252–261.

    Article  Google Scholar 

  18. Ho, S. T., & Hutmacher, D. W. (2006). A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials, 27, 1362–1376. https://doi.org/10.1016/j.biomaterials.2005.08.035

    Article  CAS  PubMed  Google Scholar 

  19. Holzwarth, J. M., & Ma, P. X. (2011). Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials, 32, 9622–9629.

    Article  CAS  Google Scholar 

  20. Hua, F. J., Kim, G. E., Lee, J. D., Son, Y. K., & Lee, D. S. (2002). Macroporous poly (L-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid–liquid phase separation of a PLLA–dioxane–water system. Journal of Biomedical Materials Research, 63, 161–167.

    Article  CAS  Google Scholar 

  21. Hua, F. J., Kim, G. E., Lee, J. D., Son, Y. K., & Lee, D. S. (2002). Macroporous poly(L-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid–liquid phase separation of a PLLA–dioxane–water system. Journal of Biomedical Materials Research, 63, 161–167.

    Article  CAS  Google Scholar 

  22. Jeon, S., Karkhanechi, H., Fang, L.-F., Cheng, L., Ono, T., Nakamura, R., & Matsuyama, H. (2018). Novel preparation and fundamental characterization of polyamide 6 self-supporting hollow fiber membranes via thermally induced phase separation (TIPS). Journal of Membrane Science, 546, 1–14.

    Article  CAS  Google Scholar 

  23. Khojasteh, A., et al. (2016). Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering. Materials Science and Engineering C, 69, 780–788.

    Article  CAS  Google Scholar 

  24. La Carrubba, V., Pavia, F. C., Brucato, V., & Piccarolo, S. (2008). PLLA/PLA scaffolds prepared via Thermally Induced Phase Separation (TIPS): tuning of properties and biodegradability International. Journal of Material Forming, 1, 619–622.

    Article  Google Scholar 

  25. Li, X.-T., Zhang, Y., & Chen, G.-Q. (2008). Nanofibrous polyhydroxyalkanoate matrices as cell growth supporting materials. Biomaterials, 29, 3720–3728.

    Article  CAS  Google Scholar 

  26. Lim, J. I., Im, H., & Lee, W.-K. (2015). Fabrication of porous chitosan-polyvinyl pyrrolidone scaffolds from a quaternary system via phase separation Journal of Biomaterials Science. Polymer Edition, 26, 32–41.

    CAS  PubMed  Google Scholar 

  27. Meyer, C., et al. (2016). Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves. Biomaterials, 76, 33–51.

    Article  CAS  Google Scholar 

  28. Mohamadi, F., et al. (2017). Electrospun nerve guide scaffold of poly (ε-caprolactone)/collagen/nanobioglass: An in vitro study in peripheral nerve tissue engineering. Journal of Biomedical Materials Research Part A, 105, 1960–1972.

    Article  CAS  Google Scholar 

  29. Panseri, S., et al. (2008). Electrospun micro-and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. Bmc Biotechnology, 8, 1.

    Article  Google Scholar 

  30. Prabaharan, M., Rodriguez-Perez, M. A., de Saja, J. A., & Mano, J. F. (2007). Preparation and characterization of poly(L-lactic acid)-chitosan hybrid scaffolds with drug release capability. Journal of Biomedical Materials Research Part B Applied Biomaterials, 81B, 427–434. https://doi.org/10.1002/jbm.b.30680

    Article  CAS  Google Scholar 

  31. Ranjbar-Mohammadi, M., Prabhakaran, M. P., Bahrami, S. H., & Ramakrishna, S. (2016). Gum tragacanth/poly (l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage. Carbohydrate Polymers, 140, 104–112.

    Article  CAS  Google Scholar 

  32. Rasal, R. M., Janorkar, A. V., & Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35, 338–356. https://doi.org/10.1016/j.progpolymsci.2009.12.003

    Article  CAS  Google Scholar 

  33. Rotter, N., Bücheler, M., Haisch, A., Wollenberg, B., & Lang, S. (2007). Cartilage tissue engineering using resorbable scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 1, 411–416.

    Article  CAS  Google Scholar 

  34. Salehi, M., & Bastami, F. (2016). Characterization of wet-electrospun poly (ε-caprolactone)/poly (L-lactic) acid with calcium phosphates coated with chitosan for bone engineering regeneration. Reconstruction & Restoration, 1, 69–74.

    Google Scholar 

  35. Salehi, M., Farzamfar, S., Bastami, F., & Tajerian, R. (2016). Fabrication and characterization of electrospun PLLA/collagen nanofibrous scaffold coated with chitosan to sustain release of aloe vera gel for skin tissue engineering. Biomedical Engineering Applications Basis and Communications, 28, 1650035.

    Article  CAS  Google Scholar 

  36. Salehi, M., Naseri Nosar, M., Amani, A., Azami, M., Tavakol, S., & Ghanbari, H. (2015). Preparation of pure PLLA, pure chitosan, and PLLA/Chitosan blend porous tissue engineering scaffolds by thermally induced phase separation method and evaluation of the corresponding mechanical and biological properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 64, 675–682.

    Article  CAS  Google Scholar 

  37. Scherman, P., Kanje, M., & Dahlin, L. B. (2003). Bridging short nerve defects by direct repair under tension, nerve grafts or longitudinal sutures. Restorative Neurology and Neuroscience, 22, 65–72.

    Google Scholar 

  38. Schugens, C., Maquet, V., Grandfils, C., Jerome, R., & Teyssie, P. (1996). Polylactide macroporous biodegradable implants for cell transplantation. II Preparation of polylactide foams by liquid-liquid phase separation. Journal of Biomedical Materials Research, 30, 449–461.

    Article  CAS  Google Scholar 

  39. Shao, J., Chen, C., Wang, Y., Chen, X., & Du, C. (2012). Early stage structural evolution of PLLA porous scaffolds in thermally induced phase separation process and the corresponding biodegradability and biological property. Polymer Degradation and Stability, 97, 955–963. https://doi.org/10.1016/j.polymdegradstab.2012.03.014

    Article  CAS  Google Scholar 

  40. Vasita, R., & Katti, D. S. (2006). Nanofibers and their applications in tissue engineering. International Journal of Nanomedicine, 1, 15.

    Article  CAS  Google Scholar 

  41. Vieira, A. C., Vieira, J. C., Ferra, J. M., Magalhães, F. D., Guedes, R. M., & Marques, A. T. (2011). Mechanical study of PLA–PCL fibers during in vitro degradation. Journal of the Mechanical Behavior of Biomedical Materials, 4, 451–460. https://doi.org/10.1016/j.jmbbm.2010.12.006

    Article  CAS  PubMed  Google Scholar 

  42. Wang, W., Itoh, S., Matsuda, A., Ichinose, S., Shinomiya, K., Hata, Y., & Tanaka, J. (2008). Influences of mechanical properties and permeability on chitosan nano/microfiber mesh tubes as a scaffold for nerve regeneration. Journal of Biomedical Materials Research Part A, 84, 557–566.

    PubMed  Google Scholar 

  43. Xie, F., Li, Q. F., Gu, B., Liu, K., & Shen, G. X. (2008). In vitro and in vivo evaluation of a biodegradable chitosan–PLA composite peripheral nerve guide conduit material. Microsurgery, 28, 471–479.

    Article  Google Scholar 

  44. Ying, H. S., Gottron, F. J., & Choi, D. W. (2001). Assessment of cell viability in primary neuronal cultures. Current Protocols in Neuroscience, 7(18), 11–17.

    Google Scholar 

  45. Yu, W., et al. (2011). Sciatic nerve regeneration in rats by a promising electrospun collagen/poly (ε-caprolactone) nerve conduit with tailored degradation rate. BMC Neuroscience, 12, 1.

    Article  Google Scholar 

  46. Yue, Z.-G., Wei, W., Lv, P.-P., Yue, H., Wang, L.-Y., Su, Z.-G., & Ma, G.-H. (2011). Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules, 12, 2440–2446.

    Article  CAS  Google Scholar 

  47. Zhang, X., Hua, H., Shen, X., & Yang, Q. (2007). In vitro degradation and biocompatibility of poly(l-lactic acid)/chitosan fiber composites. Polymer, 48, 1005–1011. https://doi.org/10.1016/j.polymer.2006.12.028

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Majid Salehi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehterami, A., Masoomikarimi, M., Bastami, F. et al. Fabrication and Characterization of Nanofibrous Poly (L-Lactic Acid)/Chitosan-Based Scaffold by Liquid–Liquid Phase Separation Technique for Nerve Tissue Engineering. Mol Biotechnol 63, 818–827 (2021). https://doi.org/10.1007/s12033-021-00346-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00346-3

Keywords

Navigation