Skip to main content
Log in

Ubiquitin-Specific Peptidase 5 is Involved in the Proliferation of Trophoblast Cells by Regulating Wnt/β-Catenin Signaling

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Preeclampsia (PE) is a pathologic condition in pregnant women which accounts for the inhibition of proliferation, migration and invasion of trophoblast cells. This study aimed to investigate the regulation of ubiquitin-specific peptidase 5 (USP5) on the trophoblast cells in PE. Expressions of USP5 in the placentas of PE patients and healthy donors were examined by qRT-PCR and Western blot. Hypoxia/reoxygenation (H/R) model in trophoblast cells was further established. Cell viability was examined using CCK-8 assay. Finally, the effect of overexpression and silence of USP5 using lentivirus transduction was studied. Our results showed that USP5 was lowly expressed in the placentas of PE patients as well as in H/R-induced trophoblast cells. In the experiments of overexpression, USP5 promoted the proliferation of trophoblast cells, and up-regulated the expressions of β-catenin and the downstream signals c-Myc and Cyclin D1 in trophoblast cells. On the other hand, silence of USP5 elicited the opposite results. The overexpression of USP5 in the H/R model greatly released the H/R-induced inhibition in the trophoblast cells, and moderated the down-regulation of β-catenin and c-Myc induced by H/R. We concluded that USP5 promoted the proliferation of trophoblast cells via the up-regulation of the Wnt/β-catenin signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Filipek, A., & Jurewicz, E. (2018). Preeclampsia—A disease of pregnant women. Postepy Biochemii, 64, 232–229

    Article  PubMed  Google Scholar 

  2. Mol, B. W. J., Roberts, C. T., Thangaratinam, S., Magee, L. A., de Groot, C. J. M., & Hofmeyr, G. J. (2016). Pre-eclampsia. Lancet, 387, 999–1011

    Article  PubMed  Google Scholar 

  3. Poon, L. C., Shennan, A., Hyett, J. A., Kapur, A., Hadar, E., Divakar, H., McAuliffe, F., da Silva Costa, F., von Dadelszen, P., McIntyre, H. D., Kihara, A. B., Di Renzo, G. C., Romero, R., D’Alton, M., Berghella, V., Nicolaides, K. H., & Hod, M. (2019). The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. International Journal of Gynaecology and Obstetrics, 145(Suppl 1), 1–33

    Article  PubMed  Google Scholar 

  4. Korkes, H. A., De Oliveira, L., Sass, N., Salahuddin, S., Karumanchi, S. A., & Rajakumar, A. (2017). Relationship between hypoxia and downstream pathogenic pathways in preeclampsia. Hypertension in Pregnancy, 36, 145–150

    Article  PubMed  Google Scholar 

  5. Chen, P. S., Chiu, W. T., Hsu, P. L., Lin, S. C., Peng, I. C., Wang, C. Y., & Tsai, S. J. (2020). Pathophysiological implications of hypoxia in human diseases. Journal of Biomedical Science, 27, 63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tranquilli, A. L., Brown, M. A., Zeeman, G. G., Dekker, G., & Sibai, B. M. (2013). The definition of severe and early-onset preeclampsia. Statements from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Pregnancy Hypertens, 3, 44–47

    Article  PubMed  Google Scholar 

  7. Myatt, L. (2002). Role of placenta in preeclampsia. Endocrine, 19, 103–111

    Article  CAS  PubMed  Google Scholar 

  8. Redman, C. W., & Sargent, I. L. (2005). Latest advances in understanding preeclampsia. Science, 308, 1592–1594

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, Z., Wang, X., Zhang, L., Shi, Y., Wang, J., & Yan, H. (2017). Wnt/β-catenin signaling pathway in trophoblasts and abnormal activation in preeclampsia. Molecular Medicine Reports, 16, 1007–1013

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, L., Song, Y., Ling, Z., Li, Y., Ren, X., Yang, J., Wang, Z., Xia, J., Zhang, W., & Cheng, B. (2019). R-spondin 2-LGR4 system regulates growth, migration and invasion, epithelial-mesenchymal transition and stem-like properties of tongue squamous cell carcinoma via Wnt/β-catenin signaling. eBioMedicine, 44, 275–288

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li, L., Peng, W., Zhou, Q., Wan, J. P., Wang, X. T., & Qi, H. B. (2020). LRP6 regulates Rab7-mediated autophagy through the Wnt/β-catenin pathway to modulate trophoblast cell migration and invasion. Journal of Cellular Biochemistry, 121, 1599–1609

    Article  CAS  PubMed  Google Scholar 

  12. Li, X. Y., Wu, H. Y., Mao, X. F., Jiang, L. X., & Wang, Y. X. (2017). USP5 promotes tumorigenesis and progression of pancreatic cancer by stabilizing FoxM1 protein. Biochemical and Biophysical Research Communications, 492, 48–54

    Article  CAS  PubMed  Google Scholar 

  13. Ma, X., Qi, W., Pan, H., Yang, F., & Deng, J. (2018). Overexpression of USP5 contributes to tumorigenesis in non-small cell lung cancer via the stabilization of β-catenin protein. American Journal of Cancer Research, 8, 2284–2295

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu, X., Huang, A., Cui, X., Han, K., Hou, X., Wang, Q., Cui, L., & Yang, Y. (2019). Ubiquitin specific peptidase 5 regulates colorectal cancer cell growth by stabilizing Tu translation elongation factor. Theranostics, 9, 4208–4220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Du, Y., Lin, J., Zhang, R., Yang, W., Quan, H., Zang, L., Han, Y., Li, B., Sun, H., & Wu, J. (2019). Ubiquitin specific peptidase 5 promotes ovarian cancer cell proliferation through deubiquitinating HDAC2. Aging (Albany NY), 11, 9778–9793

    Article  CAS  Google Scholar 

  16. Zhang, L., Li, H., Li, M., Zhang, W., Yang, Z., & Zhang, S. (2020). LRP6 is involved in the proliferation, migration and invasion of trophoblast cells via miR-346. International Journal of Molecular Medicine, 46, 211–223

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, L., Wang, J., Fan, X., Zhang, Y., Zhoua, M., Li, X., & Wang, L. (2021). LASP2 inhibits trophoblast cell migration and invasion in preeclampsia through inactivation of the Wnt/β-catenin signaling pathway. Journal of Receptor and Signal Transduction Research, 41, 67–73

    Article  CAS  PubMed  Google Scholar 

  18. Sheiner, E., Kapur, A., Retnakaran, R., Hadar, E., Poon, L. C., McIntyre, H. D., Divakar, H., Staff, A. C., Narula, J., Kihara, A. B., & Hod, M. (2019). FIGO (International Federation of Gynecology and Obstetrics) postpregnancy initiative: Long-term maternal implications of pregnancy complications-follow-up considerations. International Journal of Gynaecology and Obstetrics, 147(Suppl 1), 1–31

    Article  PubMed  Google Scholar 

  19. Boulanger, H., & Flamant, M. (2007). New insights in the pathophysiology of preeclampsia and potential therapeutic implications. Néphrologie & Thérapeutique, 3, 437–448

    Article  CAS  Google Scholar 

  20. Wang, Z., Feng, W., & Liu, J. (2020) Current understanding of autoantibody against angiotensin II type 1 receptor in preeclampsia. J Matern Fetal Neonatal Med. https://doi.org/10.1080/14767058.2020.18467091-6

    Article  PubMed  Google Scholar 

  21. Phipps, E., Prasanna, D., Brima, W., & Jim, B. (2016). Preeclampsia: Updates in pathogenesis, definitions, and guidelines. Clinical Journal of the American Society of Nephrology, 11, 1102–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kay, V. R., Wedel, N., & Smith, G. N. (2020). Family history of hypertension, cardiovascular disease, or diabetes and risk of developing preeclampsia: A systematic review. Journal of Obstetrics and Gynecology Canada., 43, 227–236

    Article  Google Scholar 

  23. Finnegan, C., & Breathnach, F. M. (2020). The role of aspirin for preeclampsia prevention in women with diabetes. Current Diabetes Reports, 20, 76

    Article  CAS  PubMed  Google Scholar 

  24. Zhu, S., Li, Z., Cui, L., Ban, Y., Leung, P. C. K., Li, Y., & Ma, J. (2021) Activin A increases human trophoblast invasion by upregulating integrin beta1 through ALK4. FASEB Journal, 35, e21220

    CAS  PubMed  Google Scholar 

  25. Illsley, N. P., DaSilva-Arnold, S. C., Zamudio, S., Alvarez, M., & Al-Khan, A. (2020). Trophoblast invasion: Lessons from abnormally invasive placenta (placenta accreta). Placenta, 102, 61–66

    Article  CAS  PubMed  Google Scholar 

  26. Qu, H., Yu, Q., Jia, B., Zhou, W., Zhang, Y., & Mu, L. (2021). HIF3 alpha affects preeclampsia development by regulating EVT growth via activation of the Flt1/JAK/STAT signaling pathway in hypoxia. Molecular Medicine Reports, 23, 68.

    Article  CAS  PubMed  Google Scholar 

  27. Ning, F., Xin, H., Liu, J., Lv, C., Xu, X., Wang, M., Wang, Y., Zhang, W., & Zhang, X. (2020). Structure and function of USP5: Insight into physiological and pathophysiological roles. Pharmacological Research, 157, 104557

    Article  CAS  PubMed  Google Scholar 

  28. Nakajima, S., Lan, L., Wei, L., Hsieh, C. L., Rapic-Otrin, V., Yasui, A., & Levine, A. S. (2014). Ubiquitin-specific protease 5 is required for the efficient repair of DNA double-strand breaks. PLoS ONE, 9, e84899

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nostramo, R., Varia, S. N., Zhang, B., Emerson, M. M., & Herman, P. K. (2016). Deubiquitination and the regulation of stress granule assembly. Molecular and Cellular Biology, 36, 173–183

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Q., Wu, Y., Qin, Y., Hu, J., Xie, W., Qin, F. X., & Cui, J. (2018). Broad and diverse mechanisms used by deubiquitinase family members in regulating the type I interferon signaling pathway during antiviral responses. Science Advances, 4, eaar2824

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lian, J., Liu, C., Guan, X., Wang, B., Yao, Y., Su, D., Ma, Y., Fang, L., & Zhang, Y. (2020). Ubiquitin specific peptidase 5 enhances STAT3 signaling and promotes migration and invasion in pancreatic cancer. Journal of Cancer, 11, 6802–6811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu, L., Zhang, C., Chu, M., Fan, Y., Wei, L., Li, Z., Yao, Y., & Zhuang, W. (2020). miR-125a suppresses malignancy of multiple myeloma by reducing the deubiquitinase USP5. Journal of Cellular Biochemistry, 121, 642–650

    Article  CAS  PubMed  Google Scholar 

  33. Xue, S., Wu, W., Wang, Z., Lu, G., Sun, J., Jin, X., Xie, L., Wang, X., Tan, C., Wang, Z., Wang, W., & Ding, X. (2020). Corrigendum: USP5 promotes metastasis in non-small cell lung cancer by inducing epithelial-mesenchymal transition via Wnt/β-catenin pathway. Frontiers in Pharmacology, 11, 948

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang, Z., Gao, W., Zhou, L., Chen, Y., Qin, S., Zhang, L., Liu, J., He, Y., Lei, Y., Chen, H. N., Han, J., Zhou, Z. G., Nice, E. C., Li, C., Huang, C., & Wei, X. (2019). Repurposing Brigatinib for the treatment of colorectal cancer based on inhibition of ER-phagy. Theranostics, 9, 4878–4892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meng, J., Ai, X., Lei, Y., Zhong, W., Qian, B., Qiao, K., Wang, X., Zhou, B., Wang, H., Huai, L., Zhang, X., Han, J., Xue, Y., Liang, Y., Zhou, H., Chen, S., Sun, T., & Yang, C. (2019). USP5 promotes epithelial-mesenchymal transition by stabilizing SLUG in hepatocellular carcinoma. Theranostics, 9, 573–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu, X., Zhang, Y., Yang, P., Gao, X., & Wang, Y. (2019). Downregulated low-density lipoprotein receptor-related protein 6 induces the maldevelopment of extravillous trophoblast via Wnt/β-catenin signaling pathway. Molecular and Cellular Probes, 44, 21–28

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Scientific Research Fund Project of Hebei Health and Family Planning Commission (20190471).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Zhao.

Ethics declarations

Conflicts of interest

None to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, S., Wang, M. et al. Ubiquitin-Specific Peptidase 5 is Involved in the Proliferation of Trophoblast Cells by Regulating Wnt/β-Catenin Signaling. Mol Biotechnol 63, 686–693 (2021). https://doi.org/10.1007/s12033-021-00330-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00330-x

Keywords

Navigation