Skip to main content
Log in

Effects of Light Regulation on Proteome Expression in Rhodobacter sphaeroides 2.4.1

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Light plays an important role in the transcriptional regulation of photosynthetic apparatus. The influence of oxygen and light conditions on the protein expression of Rhodobacter sphaeroides was investigated using a proteomic approach. The R. sphaeroides was grown aerobically under dark cultivation (D24) and light cultivation (L24) for 24 h. An average of 950 distinguishable spots were obtained on 2-D analytic gel for D24 and L24 conditions, of which 48 proteins exhibited significant changes in protein expression levels. Among the 48, 31 proteins were upregulated and 17 proteins were downregulated in L24 when compared with D24. The results depict the comparative protein expression in R. sphaeroides mediated through growth under light or dark conditions. The data suggest that the overexpressed proteins, phosphoribosyl-ATP pyrophosphatase (HisE), in the D24/aerobic culture are involved in the positive regulation of PAC production can be functionally applied in metabolic engineering and industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mouncey, N. J., Choudhary, M., & Kaplan, S. (1997). Characterization of genes encoding dimethyl sulfoxide reductase of Rhodobacter sphaeroides 2.4. 1T: An essential metabolic gene function encoded on chromosome II. Journal of bacteriology, 179, 7617–7624.

    Article  CAS  Google Scholar 

  2. Desai, S. H., & Atsumi, S. (2013). Photosynthetic approaches to chemical biotechnology. Current opinion in biotechnology, 24, 1031–1036.

    Article  CAS  Google Scholar 

  3. Volpicella, M., Costanza, A., Palumbo, O., Italiano, F., Claudia, L., Placido, A., Picardi, E., Carella, M., Trotta, M., & Ceci, L. R. (2014). Rhodobacter sphaeroides adaptation to high concentrations of cobalt ions requires energetic metabolism changes. FEMS Microbiology Ecology, 88, 345–357.

    Article  CAS  Google Scholar 

  4. Knox, P., Baptista, M., Uchoa, A., & Zakharova, N. (2005). Effects of oxygen, heavy water, and glycerol on electron transfer in the acceptor part of Rhodobacter sphaeroides reaction centers. Biochemistry (Moscow), 70, 1268–1273.

    Article  CAS  Google Scholar 

  5. Roh, J. H., Smith, W. E., & Kaplan, S. (2004). Effects of oxygen and light intensity on transcriptome expression in Rhodobacter sphaeroides 2.4. 1 redox active gene expression profile. Journal of Biological Chemistry, 279, 9146–9155.

    Article  CAS  Google Scholar 

  6. Knox, P., Lukashev, E., Timofeev, K., & Seifullina, N. K. (2002). Effects of oxygen on the dark recombination between photoreduced secondary quinone and oxidized bacteriochlorophyll in Rhodobacter sphaeroides reaction centers. Biochemistry (Moscow), 67, 901–907.

    Article  CAS  Google Scholar 

  7. Niederman, R. A. (2006). Structure, function and formation of bacterial intracytoplasmic membranes. In Complex Intracellular structures in prokaryotes. Springer, pp. 193–227.

  8. Frühwirth, S., Teich, K., & Klug, G. (2012). Effects of the cryptochrome CryB from Rhodobacter sphaeroides on global gene expression in the dark or blue light or in the presence of singlet oxygen. PLoS One, 7, e33791.

    Article  Google Scholar 

  9. Park, J.-Y., Lee, H.-I., Kim, S. Y., We, J.-H., Kim, Y.-H., & Min, J. (2020). Effects of extracted from photosynthetic bacteria on the growth and quality of lettuce (Lactuca sativa L.) in a LED-Plant Factory. KSBB Journal, 35, 44–50.

    Article  Google Scholar 

  10. Imam, S., Noguera, D. R., & Donohue, T. J. (2014). Global analysis of photosynthesis transcriptional regulatory networks. PLoS Genetics, 10, e1004837.

    Article  Google Scholar 

  11. Peña-Castillo, L., Mercer, R. G., Gurinovich, A., Callister, S. J., Wright, A. T., Westbye, A. B., Beatty, J. T., & Lang, A. S. (2014). Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides. BMC Genomics, 15, 1–14.

    Article  Google Scholar 

  12. Rabilloud, T. (1999) Silver staining of 2-D electrophoresis gels. 2-D proteome analysis protocols, 297–305.

  13. Lee, S. Y., Ahn, J.-Y., Kim, M., Sekhon, S. S., Cho, S.-J., Kim, Y.-C., & Kim, Y.-H. (2017). Phenotypic and proteomic analysis of positively regulated gellan biosynthesis pathway in Sphingomonas elodea. Animal Cells and Systems, 21, 115–123.

    Article  CAS  Google Scholar 

  14. Sargsyan, H., Gabrielyan, L., Hakobyan, L., & Trchounian, A. (2015). Light–dark duration alternation effects on Rhodobacter sphaeroides growth, membrane properties and bio-hydrogen production in batch culture. International Journal of Hydrogen Energy, 40, 4084–4091.

    Article  CAS  Google Scholar 

  15. van Waasbergen, L. G., Dolganov, N., & Grossman, A. R. (2002). nblS, a gene involved in controlling photosynthesis-related gene expression during high light and nutrient stress inSynechococcus elongatus PCC 7942. Journal of bacteriology, 184, 2481–2490.

    Article  Google Scholar 

  16. Masuda, S., & Bauer, C. E. (2002). AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell, 110, 613–623.

    Article  CAS  Google Scholar 

  17. Mank, N. N., Berghoff, B. A., Hermanns, Y. N., & Klug, G. (2012). Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ. Proceedings of the National Academy of Sciences, 109, 16306–16311.

    Article  CAS  Google Scholar 

  18. Lee, J.-P., Sekhon, S. S., Kim, J. H., Kim, S. C., Cho, B.-K., Ahn, J.-Y., & Kim, Y.-H. (2020). The pine wood nematode Bursaphelenchus xylophilus and molecular diagnostic methods. Molecular & Cellular Toxicology, 16, 1–13.

    Article  CAS  Google Scholar 

  19. Eraso, J. M., Roh, J. H., Zeng, X., Callister, S. J., Lipton, M. S., & Kaplan, S. (2008). Role of the global transcriptional regulator PrrA in Rhodobacter sphaeroides 2.4. 1: Combined transcriptome and proteome analysis. Journal of bacteriology, 190, 4831–4848.

    Article  CAS  Google Scholar 

  20. O’Gara, J. P., Eraso, J. M., & Kaplan, S. (1998). A redox-responsive pathway for aerobic regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4. 1. Journal of Bacteriology, 180, 4044–4050.

    Article  Google Scholar 

  21. Peña-Castillo, L., Mercer, R. G., Gurinovich, A., Callister, S. J., Wright, A. T., Westbye, A. B., Beatty, J. T., & Lang, A. S. (2014). Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides. BMC Genomics, 15, 730.

    Article  Google Scholar 

  22. Comolli, J. C., Carl, A. J., Hall, C., & Donohue, T. (2002). Transcriptional activation of the Rhodobacter sphaeroides cytochrome c2 gene P2 promoter by the response regulator PrrA. Journal of bacteriology, 184, 390–399.

    Article  CAS  Google Scholar 

  23. Laguri, C., Stenzel, R. A., Donohue, T. J., Phillips-Jones, M. K., & Williamson, M. P. (2006). Activation of the global gene regulator PrrA (RegA) from Rhodobacter sphaeroides. Biochemistry, 45, 7872–7881.

    Article  CAS  Google Scholar 

  24. Freer, A., Prince, S., Sauer, K., Papiz, M., Lawless, A. H., McDermott, G., Cogdell, R., & Isaacs, N. W. (1996). Pigment–pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure, 4, 449–462.

    Article  CAS  Google Scholar 

  25. Cogdell, R. J., & Thornber, J. P. (1979) .The preparation and characterization of different types of light-harvesting pigment-protein complexes from some purple bacteria. Chlorophyll Organization and Energy Transfer in Photosynthesis, 61–73.

  26. Yeliseev, A. A., & Kaplan, S. (1999). A novel mechanism for the regulation of photosynthesis gene expression by the TspO outer membrane protein of Rhodobacter sphaeroides 2.4. 1. Journal of Biological Chemistry, 274, 21234–21243.

    Article  CAS  Google Scholar 

  27. Park, J.-Y., Lee, H. J., Ahn, J.-Y., Kim, Y.-H., & Min, J. (2014). Characterization of mixed organic compounds extracted from Rhodobacter sphaeroides and applications to enhance the physiological responses of fermenting microorganisms. Molecular & Cellular Toxicology, 10, 303–309.

    Article  CAS  Google Scholar 

  28. Assawamongkholsiri, T., & Reungsang, A. (2015). Photo-fermentational hydrogen production of Rhodobacter sp. KKU-PS1 isolated from an UASB reactor. Electronic Journal of Biotechnology, 18, 221–230.

    Article  Google Scholar 

  29. Sadowsky, M. J., Rostas, K., Sista, P. R., Bussey, H., & Verma, D. P. S. (1986). Symbiotically defective histidine auxotrophs of Bradyrhizobium japonicum. Archives of microbiology, 144, 334–339.

    Article  CAS  Google Scholar 

  30. Soverini, M., Rampelli, S., Turroni, S., Brigidi, P., Biagi, E. and Candela, M. (2020). Do the human gut metagenomic species possess the minimal set of core functionalities necessary for life?

  31. Bussink, A. P., Vreede, J., Aerts, J. M., & Boot, R. G. (2008). A single histidine residue modulates enzymatic activity in acidic mammalian chitinase. FEBS letters, 582, 931–935.

    Article  CAS  Google Scholar 

  32. Zeilstra-Ryalls, J., Gomelsky, M., Eraso, J. M., Yeliseev, A., O’Gara, J., & Kaplan, S. (1998). Control of Photosystem Formation inRhodobacter sphaeroides. Journal of Bacteriology, 180, 2801–2809.

    Article  CAS  Google Scholar 

  33. Gregor, J., & Klug, G. (1999). Regulation of bacterial photosynthesis genes by oxygen and light. FEMS microbiology letters, 179, 1–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (NRF-2019R1A2C1010860) and a Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A06046235).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiho Min, Ji-Young Ahn or Yang-Hoon Kim.

Ethics declarations

Conflict of Interest

The authors submit that they have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors Jae-Min Park, Hyun-Jeong Lee and Jinhee Ahn have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JM., Lee, HJ., Ahn, J. et al. Effects of Light Regulation on Proteome Expression in Rhodobacter sphaeroides 2.4.1. Mol Biotechnol 63, 437–445 (2021). https://doi.org/10.1007/s12033-021-00312-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00312-z

Keywords

Navigation