Skip to main content

Advertisement

Log in

An AMA1/MSP119 Adjuvanted Malaria Transplastomic Plant-Based Vaccine Induces Immune Responses in Test Animals

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Malaria is a tropical human disease, caused by protozoan parasites, wherein a significant number of the world's population is at risk. Annually, more than 219 million new cases are reported. Although there are prevention treatments, there are no highly and widely effective licensed anti-malarial vaccines available for use. Opportunities for utilization of plant-based vaccines as novel platforms for developing safe, reliable, and affordable treatments offer promise for developing such a vaccine against malaria. In this study, a Malchloroplast candidate vaccine was designed, composed of segments of AMA1 and MSP1 proteins, two epitopes of Plasmodium falciparum, along with a GK1 peptide from Taenia solium as adjuvant, and this was expressed in tobacco chloroplasts. Transplastomic tobacco lines were generated using biolistic transformation, and these were confirmed to carry the synthetic gene construct. Expression of the synthetic GK1 peptide was confirmed using RT-PCR and Western blots. Furthermore, the GK1 peptide was detected by HPLC at levels of up to 6 µg g−1 dry weight of tobacco leaf tissue. The plant-derived Malchloroplast candidate vaccine was subsequently tested in BALB/c female mice following subcutaneous administration, and was found to elicit specific humoral responses. Furthermore, components of this candidate vaccine were recognized by antibodies in Plasmodium falciparum malaria patients and were immunogenic in test mice. Thus, this study provided a ‘proof of concept’ for a promising plant-based candidate subunit vaccine against malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. WHO. (2018). Malaria report. Geneva: WHO.

    Google Scholar 

  2. Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y., & Hay, S. I. (2005). The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature, 434, 214–217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Black, R. E., Allen, L. H., Bhutta, Z. A., Caulfield, L. E., de Onis, M., Ezzati, M., et al. (2008). Maternal and child undernutrition: Global and regional exposures and health consequences. The Lancet, 371, 243–260.

    Article  Google Scholar 

  4. Jones, K. D. J., & Berkley, J. A. (2014). Sever acute malnutrition and infection. Paediatrics and International Child Health, 34, S1–S29.

    Article  PubMed  Google Scholar 

  5. Das, D., Grais, R. F., Okiro, E. A., Stepniewska, K., Mansoor, R., van der Kam, S., et al. (2018). Complex interactions between malaria and malnutrition: A systematic literature review. BMC Medicine, 16(1), 186. https://doi.org/10.1186/s12916-018-1177-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Crompton, P. D., Pierce, S. K., & Miller, L. H. (2010). Advances and challenges in malaria vaccine development. Journal of Clinical Investigation, 120, 4168–4178.

    Article  PubMed  CAS  Google Scholar 

  7. Cohen, J., Nussenzweig, V., Nussenzweig, R., Vekemans, J., & Leach, A. (2010). From the circumsporozoite protein to the RTS, S/AS candidate vaccine. Human Vaccines, 6, 90–96.

    Article  PubMed  CAS  Google Scholar 

  8. RTS,S Clinical Trials Partnership. (2015). Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: Final results of a phase 3, individually randomised, controlled trial. The Lancet, 386(9988), 31–45.

    Article  Google Scholar 

  9. Hodder, A. N., Crewther, P. E., & Anders, R. F. (2001). Specificity of the protective antibody response to apical membrane antigen 1. Infection and Immunity, 69, 3286–3294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kennedy, M. C., Wang, J., Zhang, Y., Miles, A. P., Chitsaz, F., Saul, A., et al. (2002). In vitro studies with recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1): Production and activity of an AMA1 vaccine and generation of a multiallelic response. Infection and Immunity, 70, 6948–6960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Fowkes, F. J., Richards, J. S., Simpson, J. A., & Beeson, J. G. (2010). The relationship between anti-merozoite antibodies and incidence of Plasmodium falciparum malaria: A systematic review and meta-analysis. PLOS Medicine, 7, e1000218.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Thera, M. A., Doumbo, O. K., Coulibaly, D., Laurens, M. B., Ouattara, A., Kone, A. K., et al. (2011). A field trial to assess a blood-stage malaria vaccine. New England Journal of Medicine, 365, 1004–1013.

    Article  PubMed  CAS  Google Scholar 

  13. Girard, M. P., Reed, Z. H., Friede, M., & Kieny, M. P. (2007). A review of human vaccine research and development: Malaria. Vaccine, 25(9), 1567–1580.

    Article  PubMed  CAS  Google Scholar 

  14. Targett, G. A., & Greenwood, B. M. (2008). Malaria vaccines and their potential role in the elimination of malaria. Malaria Journal, 7(1), S10.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chitnis, C. E., Mukherjee, P., Mehta, S., Yazdani, S. S., Dhawan, S., Shakri, A. R., et al. (2015). Phase I clinical trial of a recombinant blood stage vaccine candidate for Plasmodium falciparum malaria based on MSP1 and EBA175. PLoS ONE, 10(4), e0117820. https://doi.org/10.1371/journal.pone.0117820.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. NIAID. (2015). National Institute of Allergy and Infectious Diseases; National Institutes of Health Clinical Center (CC). Phase I study of the safety and immunogenicity of BSAM-2/Alhydrogel (Registered Trademark) + CPG 7909, an asexual blood stage vaccine for Plasmodium falciparum malaria in adults in the US and Mali. 2014. Retrieved June 8, 2015, from https://clinicaltrials.gov/ct2/show/NCT00889616.

  17. Lau, O. S., & Sun, S. M. S. (2009). Plant seeds as bioreactors for recombinant protein production. Biotechnology Advances, 27(6), 1015–1022.

    Article  PubMed  CAS  Google Scholar 

  18. Obembe, O. O., Popoola, J. O., Leelavathi, S., & Reddy, S. V. (2011). Advances in plant molecular farming. Biotechnology Advances, 29(2), 210–222.

    Article  PubMed  Google Scholar 

  19. Concha, C., Cañas, R., Macuer, J., Torres, M. J., Herrada, A. A., Jamett, F., et al. (2017). Disease prevention: An opportunity to expand edible plant-based vaccines? Vaccines, 5(2), 14. https://doi.org/10.3390/vaccines5020014.

    Article  PubMed Central  CAS  Google Scholar 

  20. Pelosi, A., Piedrafita, D., De Guzman, G., Shepherd, R., Hamill, J. D., Meeusen, E., et al. (2012). The effect of plant tissue and vaccine formulation on the oral immunogenicity of a model plant-made antigen in sheep. PLoS ONE, 7(12), e52907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Rosales-Mendoza, S., Soria-Guerra, R., Moreno-Fierros, L., Govea-Alonso, D. O., Herrera-Díaz, A., Korban, S. S., et al. (2011). Immunogenicity of nuclear-encoded LTB:ST fusion protein from Escherichia coli expressed in tobacco plants. Plant Cell Reports, 30(6), 1145–1152.

    Article  PubMed  CAS  Google Scholar 

  22. Takeyama, N., Kiyono, H., & Yuki, Y. (2015). Plant-based vaccines for animals and humans: Recent advances in technology and clinical trials. Therapeutic Advances in Vaccines, 3(5–6), 139–154. https://doi.org/10.1177/2051013615613272.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Clements, C. J., Larsen, G., & Jodar, L. (2004). Technologies that make administration of vaccines safer. Vaccine, 22, 2054–2058.

    Article  PubMed  CAS  Google Scholar 

  24. Tiwari, S., Verma, P. C., Singh, P. K., & Tuli, R. (2009). Plants as bioreactors for the production of vaccine antigens. Biotechnology Advances, 27(4), 449–467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kurup, V. M., & Thomas, J. (2019). Edible vaccines: Promises and challenges. Molecular Biotechnology. https://doi.org/10.1007/s12033-019-00222-1.

    Article  PubMed Central  Google Scholar 

  26. Yusibov, V. (2015). A novel plant-produced Pfs25 fusion subunit vaccine induces long-lasting transmission blocking antibody responses. Human Vaccines & Immunotherapeutics, 11(1), 124–132.

    Article  Google Scholar 

  27. Chichester, J. A., Green, B. J., Jones, R. M., Shoji, Y., Miura, K., Long, C. A., et al. (2018). Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: A phase 1 dose-escalation study in healthy adults. Vaccine, 36(39), 5865–5871. https://doi.org/10.1016/j.vaccine.2018.08.033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kwon, K. C., Verma, D., Singh, N. D., Herzog, R., & Daniell, H. (2013). Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Advanced Drug Delivery Reviews, 65(6), 782–799.

    Article  PubMed  CAS  Google Scholar 

  29. Su, J., Zhu, L., Sherman, A., Wang, X., Lin, S., Kamesh, A., et al. (2015). Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Biomaterials, 70, 84–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Toledo, A., Larralde, C., Fragoso, G., Gevorkian, G., Manoutcharian, K., Hernández, M., et al. (1999). Towards a Taenia solium cysticercosis vaccine: An epitope shared by Taenia crassiceps and Taenia solium protects mice against experimental cysticercosis. Infection and Immunity, 67(5), 2522–2530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Segura-Velázquez, R., Fragoso, G., Sciutto, E., & Sarukhan, A. (2009). Towards identification of the mechanisms of action of parasite-derived peptide GK1 on the immunogenicity of an influenza vaccine. Clinical and Vaccine Immunology, 16(9), 1338–1343.

    Article  PubMed  Google Scholar 

  32. Rosales-Mendoza, S., Alpuche-Solís, Á. G., Soria-Guerra, R. E., Moreno-Fierros, L., Martínez-González, L., Herrera-Díaz, A., et al. (2009). Expression of an Escherichia coli antigenic fusion protein comprising the heat labile toxin B subunit and the heat stable toxin, and its assembly as a functional oligomer in transplastomic tobacco plants. Plant Journal, 57(1), 45–54.

    Article  PubMed  CAS  Google Scholar 

  33. Zou, Z., Eibl, C., & Koop, H. U. (2003). The stem-loop region of the tobacco psbA 5’UTR is an important determinant of mRNA stability and translation efficiency. Molecular Genetics & Genomics, 269, 340–349.

    Article  CAS  Google Scholar 

  34. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  35. Daniell, H., Ruiz, O. N., & Dhingra, A. (2005). Chloroplast genetic engineering to improve agronomic traits. Methods in Molecular Biology, 286, 111–138.

    PubMed  CAS  Google Scholar 

  36. Soria-Guerra, R., Alpuche-Solís, A., Rosales-Mendoza, S., Moreno-Fierros, L., Bendik, E. M., Martinez-Gonzales, L., et al. (2009). Transplastomic tobacco plants expressing a multi-epitope fusion DPT protein retain antigenicity and immunogenicity of all three components. Planta, 229, 1293–1302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Monreal-Escalante, E., Bañuelos-Hernández, B., Hernández, M., Fragoso, G., Garate, T., Sciutto, E., et al. (2015). Expression of multiple Taenia solium immunogens in plant cells through a ribosomal skip mechanism. Molecular Biotechnology, 57(7), 635–643.

    Article  PubMed  CAS  Google Scholar 

  38. Yang, J., & Zhang, Y. (2015). I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Research, 43, 1174–W181.

    Google Scholar 

  39. Zhang, C., Freddolino, P. L., & Zhang, Y. (2017). COFACTOR: Improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Research, 45, W291–W299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ghosh, S. P., Malhotra, P. V., Lalitha, S., & Guha-Mukherjee Chauhan, V. S. (2002). Expression of Plasmodium falciparum C-terminal region of merozoite surface protein (PfMSP119), a potential malaria vaccine candidate, in tobacco. Plant Science, 162, 335–343.

    Article  CAS  Google Scholar 

  41. Pan, W., Huang, D., Zhang, Q., Qu, L., Zhang, D., Zhang, X., et al. (2004). Fusion of two malaria vaccine candidate antigens enhances product yield, immunogenicity, and antibody-mediated inhibition of parasite growth in vitro. Journal of Immunology, 172, 6167–6174. https://doi.org/10.4049/jimmunol.172.10.6167.

    Article  CAS  Google Scholar 

  42. Hamid, M. M., Remarque, E. J., van Duivenvoorde, L. M., van der Werff, N., Walraven, V., Faber, B. W., et al. (2011). Vaccination with Plasmodium knowlesi AMA1 formulated in the novel adjuvant co-vaccine HT™ protects against blood-stage challenge in Rhesus macaques. PLoS ONE, 6, e20547.

    Article  Google Scholar 

  43. Wang, L., Webster, D. E., Campbell, A. E., Dry, A. B., Wesselingh, S. L., & Coppel, R. L. (2008). Immunogenicity of Plasmodium yoelii merozoite surface protein 4/5 produced in transgenic plants. International Journal for Parasitology, 38, 103–110.

    Article  PubMed  CAS  Google Scholar 

  44. Boes, A., Spiegel, H., Voepel, N., Edgue, G., Beiss, V., Kapelski, S., et al. (2015). Analysis of a multi-component multi-stage malaria vaccine candidate—Tackling the cocktail challenge. PLoS ONE, 10(7), e0131456. https://doi.org/10.1371/journal.pone.0131456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Remarque, E., Faber, B., Kocken, C., & Thomas, A. (2008). Apical membrane antigen 1: A malaria vaccine candidate in review. Trends in Parasitology, 24(2), 74–84.

    Article  PubMed  CAS  Google Scholar 

  46. Paul, G., Deshmukh, A., Chourasia, B. K., Kalamuddin, M., Panda, A., Singh, S. K., et al. (2018). Protein–protein interaction studies reveal the Plasmodium falciparum merozoite surface protein-1 region involved in a complex formation that binds to human erythrocytes. Biochemical Journal, 475(6), 1197–1209. https://doi.org/10.1042/BCJ20180017.

    Article  PubMed  CAS  Google Scholar 

  47. Daly, T., & Long, C. (1993). A recombinant 15-kilodalton carboxyl-terminal fragment of Plasmodium yoelii yoelii 17XL merozoite surface protein 1 induces a protective immune response in mice. Infection and Immunity, 61(6), 2462–2467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Crewther, P., Matthew, M., Flegg, R., & Anders, R. (1996). Protective immune responses to apical membrane antigen 1 of Plasmodium chabaudi involve recognition of strain-specific epitopes. Infection and Immunity, 64(8), 3310–3317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hirunpetcharat, C., Tian, J., Kaslow, D., van Rooijen, N., Kumar, S., & Berzofsky, J. (1997). Complete protective immunity induced in mice by immunization with the 19-kilodalton carboxyl-terminal fragment of the merozoite surface protein-1 (MSP1[19]) of Plasmodium yoelii expressed in Saccharomyces cerevisiae: correlation of protection with antigen-specific antibody titer, but not with effector CD4+ T cells. Journal of Immunology, 159(7), 3400–3411.

    CAS  Google Scholar 

  50. Draper, S. J., Sack, B. K., King, C. R., Nielsen, C. M., Rayner, J. C., Higgins, M. K., et al. (2018). Malaria vaccines: Recent advances and new horizons. Cell Host & Microbe, 24(1), 43–56. https://doi.org/10.1016/j.chom.2018.06.008.

    Article  CAS  Google Scholar 

  51. Waheed, M. T., Ismail, H., Gottschamel, J., Mirza, B., & Löss, A. G. (2015). Plastids: The green frontiers for vaccine production. Frontiers in Plant Science, 6, 1005. https://doi.org/10.3389/fpls.2015.01005.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Terheggen, U., Drew, D. R., Hodder, A. N., Cross, N. J., Mugyenyi, C. K., Barry, A. E., et al. (2014). Limited antigenic diversity of Plasmodium falciparumapical membrane antigen 1 supports the development of effective multi-allele vaccines. BMC Medicine, 12, 183. https://doi.org/10.1186/s12916-014-0183-5.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hoffman, S. L., Vekemans, J., Richie, T. L., & Duffy, P. E. (2015). The march toward malaria vaccines. American Journal of Preventive Medicine, 49(6 Suppl 4), S319–S333. https://doi.org/10.1016/j.amepre.2015.09.011.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is based on the first author’s Ph.D. dissertation entitled ‘Development of a plant-based vaccine against malaria’ by Evelia M. Milán-Noris and deposited at the University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 2015. This project was funded in part by CONACYT in Mexico and by the Office of Research project 65-325 of the University of Illinois at Urbana-Champaign. We would like to thank Dr. Lilia González-Cerón at the National Institute of Public Health in Mexico for providing sera from Plasmodium falciparum-positive patients.

Author information

Authors and Affiliations

Authors

Contributions

ENM, RSG, and SSK conceived and designed research. ENM, RSG, and SRM conducted experiments. OR, JAJ, EME, and SRG contributed new analytical tools. ENM, RSG, and SRM analyzed data. ENM, RSG, SRM, and SSK wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Sergio Rosales-Mendoza or Schuyler S. Korban.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milán-Noris, E.M., Monreal-Escalante, E., Rosales-Mendoza, S. et al. An AMA1/MSP119 Adjuvanted Malaria Transplastomic Plant-Based Vaccine Induces Immune Responses in Test Animals. Mol Biotechnol 62, 534–545 (2020). https://doi.org/10.1007/s12033-020-00271-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-020-00271-x

Keywords

Navigation