Skip to main content

Advertisement

Log in

m6A RNA Methylation: Ramifications for Gene Expression and Human Health

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Cellular transcriptomes are frequently adorned by a variety of chemical modification marks, which in turn have a profound influence on its functioning. Of these modifications, the one which has invited a lot of attention in the recent years is m6A RNA methylation, leading to the development of RNA epigenetics or epitranscriptomics as a frontier research area. m6A RNA methylation is one of the most abundant reversible internal modification seen in cellular RNAs. Studies in the last few years have not only shed light on the molecular machinery involved in m6A RNA methylation but also on the impact of this modification in regulating gene expression and hence biological processes. In this review, we will emphasize the biological impact of this modification in normal organismal development and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Crick, F. (1970). Central dogma of molecular biology. Nature, 227, 561–563.

    PubMed  CAS  Google Scholar 

  2. Jones, P. L., Veenstra, G. J., Wade, P. A., Vermaak, D., Kass, S. U., Landsberger, N., et al. (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genetics, 19, 187–191.

    PubMed  CAS  Google Scholar 

  3. Feinberg, A. P., & Vogelstein, B. (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, 301, 89–92.

    PubMed  CAS  Google Scholar 

  4. Cheah, M. S., Wallace, C. D., & Hoffman, R. M. (1984). Hypomethylation of DNA in human cancer cells: a site-specific change in the c-myc oncogene. Journal of the National Cancer Institute, 73, 1057–1065.

    PubMed  CAS  Google Scholar 

  5. Dong, X., & Weng, Z. (2013). The correlation between histone modifications and gene expression. Epigenomics, 5, 113–116.

    PubMed  CAS  Google Scholar 

  6. Javaid, N., & Choi, S. (2017). Acetylation- and methylation-related epigenetic proteins in the context of their targets. Genes (Basel). https://doi.org/10.3390/genes8080196.

    Article  Google Scholar 

  7. Dezi, V., Ivanov, C., Haussmann, I. U., & Soller, M. (2016). Nucleotide modifications in messenger RNA and their role in development and disease. Biochemical Society Transactions, 44, 1385–1393.

    PubMed  CAS  Google Scholar 

  8. Roundtree, I. A., Evans, M. E., Pan, T., & He, C. (2017). Dynamic RNA modifications in gene expression regulation. Cell, 169, 1187–1200.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Desrosiers, R., Friderici, K., & Rottman, F. (1974). Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A, 71, 3971–3975.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Perry, R. P., & Kelley, D. E. (1974). Existence of methylated messenger RNA in mouse L cells. Cell, 1, 37–42.

    CAS  Google Scholar 

  11. Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., et al. (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nature Chemical Biology, 7, 885–887.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Chen, T., Hao, Y. J., Zhang, Y., Li, M. M., Wang, M., Han, W., et al. (2015). m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell, 16, 289–301.

    PubMed  CAS  Google Scholar 

  13. Linder, B., Grozhik, A. V., Olarerin-George, A. O., Meydan, C., Mason, C. E., & Jaffrey, S. R. (2015). Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nature Methods, 12, 767–772.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Yang, Y., Fan, X., Mao, M., Song, X., Wu, P., Zhang, Y., et al. (2017). Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Research, 27, 626–641.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhou, C., Molinie, B., Daneshvar, K., Pondick, J. V., Wang, J., Van Wittenberghe, N., et al. (2017). Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep, 20, 2262–2276.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhao, B. S., Roundtree, I. A., & He, C. (2017). Post-transcriptional gene regulation by mRNA modifications. Nature Reviews Molecular Cell Biology, 18, 31–42.

    PubMed  CAS  Google Scholar 

  17. Shen, F., Huang, W., Huang, J. T., Xiong, J., Yang, Y., Wu, K., et al. (2015). Decreased N(6)-methyladenosine in peripheral blood RNA from diabetic patients is associated with FTO expression rather than ALKBH5. Journal of Clinical Endocrinology and Metabolism, 100, E148–154.

    PubMed  CAS  Google Scholar 

  18. Ding, C., Zou, Q., Ding, J., Ling, M., Wang, W., Li, H., et al. (2018). Increased N6-methyladenosine causes infertility is associated with FTO expression. Journal of Cellular Physiology, 233, 7055–7066.

    PubMed  CAS  Google Scholar 

  19. Chandola, U., Das, R., & Panda, B. (2015). Role of the N6-methyladenosine RNA mark in gene regulation and its implications on development and disease. Brief Funct Genomics, 14, 169–179.

    PubMed  CAS  Google Scholar 

  20. Dai, D., Wang, H., Zhu, L., Jin, H., & Wang, X. (2018). N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis, 9, 124.

    PubMed  PubMed Central  Google Scholar 

  21. Csepany, T., Lin, A., Baldick, C. J., Jr., & Beemon, K. (1990). Sequence specificity of mRNA N6-adenosine methyltransferase. Journal of Biological Chemistry, 265, 20117–20122.

    PubMed  CAS  Google Scholar 

  22. Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E., & Jaffrey, S. R. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell, 149, 1635–1646.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Ke, S., Alemu, E. A., Mertens, C., Gantman, E. C., Fak, J. J., Mele, A., et al. (2015). A majority of m6A residues are in the last exons, allowing the potential for 3' UTR regulation. Genes & Development, 29, 2037–2053.

    CAS  Google Scholar 

  24. Wei, C. M., Gershowitz, A., & Moss, B. (1976). 5'-Terminal and internal methylated nucleotide sequences in HeLa cell mRNA. Biochemistry, 15, 397–401.

    PubMed  CAS  Google Scholar 

  25. Carroll, S. M., Narayan, P., & Rottman, F. M. (1990). N6-methyladenosine residues in an intron-specific region of prolactin pre-mRNA. Molecular and Cellular Biology, 10, 4456–4465.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Ke, S., Pandya-Jones, A., Saito, Y., Fak, J. J., Vagbo, C. B., Geula, S., et al. (2017). m(6)A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes & Development, 31, 990–1006.

    CAS  Google Scholar 

  27. Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., et al. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485, 201–206.

    PubMed  CAS  Google Scholar 

  28. Dominissini, D., Moshitch-Moshkovitz, S., Salmon-Divon, M., Amariglio, N., & Rechavi, G. (2013). Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing. Nature Protocols, 8, 176–189.

    PubMed  CAS  Google Scholar 

  29. Chen, K., Lu, Z., Wang, X., Fu, Y., Luo, G. Z., Liu, N., et al. (2015). High-resolution N(6) -methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencing. Angewandte Chemie (International ed. in English), 54, 1587–1590.

    CAS  Google Scholar 

  30. Liu, N., Parisien, M., Dai, Q., Zheng, G., He, C., & Pan, T. (2013). Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA, 19, 1848–1856.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Thuring, K., Schmid, K., Keller, P., & Helm, M. (2016). Analysis of RNA modifications by liquid chromatography-tandem mass spectrometry. Methods, 107, 48–56.

    PubMed  Google Scholar 

  32. Zhou, Y., Zeng, P., Li, Y. H., Zhang, Z., & Cui, Q. (2016). SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Research, 44, e91.

    PubMed  PubMed Central  Google Scholar 

  33. Li, G. Q., Liu, Z., Shen, H. B., & Yu, D. J. (2016). Target M6A: identifying N(6)-methyladenosine sites from RNA sequences via position-specific nucleotide propensities and a support vector machine. IEEE Transactions of Nanobioscience, 15, 674–682.

    CAS  Google Scholar 

  34. Jia, C. Z., Zhang, J. J., & Gu, W. Z. (2016). RNA-MethylPred: A high-accuracy predictor to identify N6-methyladenosine in RNA. Analytical Biochemistry, 510, 72–75.

    PubMed  CAS  Google Scholar 

  35. Chen, W., Feng, P., Ding, H., Lin, H., & Chou, K. C. (2015). iRNA-Methyl: Identifying N(6)-methyladenosine sites using pseudo nucleotide composition. Analytical Biochemistry, 490, 26–33.

    PubMed  CAS  Google Scholar 

  36. Liu, Z., Xiao, X., Yu, D. J., Jia, J., Qiu, W. R., & Chou, K. C. (2016). pRNAm-PC: Predicting N(6)-methyladenosine sites in RNA sequences via physical-chemical properties. Analytical Biochemistry, 497, 60–67.

    PubMed  CAS  Google Scholar 

  37. Liu, N., & Pan, T. (2015). Probing RNA modification status at single-nucleotide resolution in total RNA. Methods in Enzymology, 560, 149–159.

    PubMed  CAS  Google Scholar 

  38. Zhu, Y., Zhou, G., Yu, X., Xu, Q., Wang, K., Xie, D., et al. (2017). LC-MS-MS quantitative analysis reveals the association between FTO and DNA methylation. PLoS ONE, 12, e0175849.

    PubMed  PubMed Central  Google Scholar 

  39. Zhao, X., Zhang, Y., Ning, Q., Zhang, H., Ji, J., & Yin, M. (2019). Identifying N(6)-methyladenosine sites using extreme gradient boosting system optimized by particle swarm optimizer. Journal of Theoretical Biology, 467, 39–47.

    PubMed  CAS  Google Scholar 

  40. Narayan, P., Ludwiczak, R. L., Goodwin, E. C., & Rottman, F. M. (1994). Context effects on N6-adenosine methylation sites in prolactin mRNA. Nucleic Acids Research, 22, 419–426.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Narayan, P., & Rottman, F. M. (1988). An in vitro system for accurate methylation of internal adenosine residues in messenger RNA. Science, 242, 1159–1162.

    PubMed  CAS  Google Scholar 

  42. Bokar, J. A., Rath-Shambaugh, M. E., Ludwiczak, R., Narayan, P., & Rottman, F. (1994). Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. Journal of Biological Chemistry, 269, 17697–17704.

    PubMed  CAS  Google Scholar 

  43. Bertero, A., Brown, S., Madrigal, P., Osnato, A., Ortmann, D., Yiangou, L., et al. (2018). The SMAD2/3 interactome reveals that TGFbeta controls m(6)A mRNA methylation in pluripotency. Nature, 555, 256–259.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Su, R., Dong, L., Li, C., Nachtergaele, S., Wunderlich, M., Qing, Y., et al. (2018). R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell, 172(90–105), e123.

    Google Scholar 

  45. Bokar, J. A., Shambaugh, M. E., Polayes, D., Matera, A. G., & Rottman, F. M. (1997). Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA, 3, 1233–1247.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M., & Pan, T. (2015). N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature, 518, 560–564.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhou, K. I., Parisien, M., Dai, Q., Liu, N., Diatchenko, L., Sachleben, J. R., et al. (2016). N(6)-methyladenosine modification in a long noncoding RNA hairpin predisposes its conformation to protein binding. Journal of Molecular Biology, 428, 822–833.

    PubMed  CAS  Google Scholar 

  48. Lin, S., & Gregory, R. I. (2014). Methyltransferases modulate RNA stability in embryonic stem cells. Nature Cell Biology, 16, 129–131.

    PubMed  CAS  Google Scholar 

  49. Wang, Y., Li, Y., Toth, J. I., Petroski, M. D., Zhang, Z., & Zhao, J. C. (2014). N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nature Cell Biology, 16, 191–198.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Geula, S., Moshitch-Moshkovitz, S., Dominissini, D., Mansour, A. A., Kol, N., Salmon-Divon, M., et al. (2015). m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science, 347, 1002–1006.

    PubMed  CAS  Google Scholar 

  51. Tian, C., Huang, Y., Li, Q., Feng, Z., & Xu, Q. (2019). Mettl3 regulates osteogenic differentiation and alternative splicing of Vegfa in bone marrow mesenchymal stem cells. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20030551.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yu, J., Shen, L., Liu, Y., Ming, H., Zhu, X., Chu, M., et al. (2020). The m6A methyltransferase METTL3 cooperates with demethylase ALKBH5 to regulate osteogenic differentiation through NF-kappaB signaling. Molecular and Cellular Biochemistry, 463, 203–210.

    PubMed  CAS  Google Scholar 

  53. Zhang, Y., Gu, X., Li, D., Cai, L., & Xu, Q. (2019). METTL3 regulates osteoblast differentiation and inflammatory response via Smad signaling and MAPK signaling. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21010199.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yan, G., Yuan, Y., He, M., Gong, R., Lei, H., Zhou, H., et al. (2019). m(6)A methylation of precursor-miR-320/RUNX2 controls osteogenic potential of bone marrow-derived mesenchymal stem cells. Mol Ther Nucleic Acids, 19, 421–436.

    PubMed  PubMed Central  Google Scholar 

  55. Zhang, Z., Wang, M., Xie, D., Huang, Z., Zhang, L., Yang, Y., et al. (2018). METTL3-mediated N(6)-methyladenosine mRNA modification enhances long-term memory consolidation. Cell Research, 28, 1050–1061.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Li, H. B., Tong, J., Zhu, S., Batista, P. J., Duffy, E. E., Zhao, J., et al. (2017). m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature, 548, 338–342.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Song, H., Feng, X., Zhang, H., Luo, Y., Huang, J., Lin, M., et al. (2019). METTL3 and ALKBH5 oppositely regulate m(6)A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy, 15, 1419–1437.

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Fustin, J. M., Doi, M., Yamaguchi, Y., Hida, H., Nishimura, S., Yoshida, M., et al. (2013). RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell, 155, 793–806.

    PubMed  CAS  Google Scholar 

  59. Fustin, J. M., Kojima, R., Itoh, K., Chang, H. Y., Ye, S., Zhuang, B., et al. (2018). Two Ck1delta transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock. Proc Natl Acad Sci U S A, 115, 5980–5985.

    PubMed  PubMed Central  Google Scholar 

  60. Alarcon, C. R., Lee, H., Goodarzi, H., Halberg, N., & Tavazoie, S. F. (2015). N6-methyladenosine marks primary microRNAs for processing. Nature, 519, 482–485.

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Vu, L. P., Pickering, B. F., Cheng, Y., Zaccara, S., Nguyen, D., Minuesa, G., et al. (2017). The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nature Medicine, 23, 1369–1376.

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Choe, J., Lin, S., Zhang, W., Liu, Q., Wang, L., Ramirez-Moya, J., et al. (2018). mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature, 561, 556–560.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Lin, S., Choe, J., Du, P., Triboulet, R., & Gregory, R. I. (2016). The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Molecular Cell, 62, 335–345.

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Barbieri, I., Tzelepis, K., Pandolfini, L., Shi, J., Millan-Zambrano, G., Robson, S. C., et al. (2017). Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature, 552, 126–131.

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Chen, M., Wei, L., Law, C. T., Tsang, F. H., Shen, J., Cheng, C. L., et al. (2018). RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology, 67, 2254–2270.

    PubMed  CAS  Google Scholar 

  66. Wu, Y., Xie, L., Wang, M., Xiong, Q., Guo, Y., Liang, Y., et al. (2018). Mettl3-mediated m(6)A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nature Communications, 9, 4772.

    PubMed  PubMed Central  Google Scholar 

  67. Bujnicki, J. M., Feder, M., Radlinska, M., & Blumenthal, R. M. (2002). Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A methyltransferase. Journal of Molecular Evolution, 55, 431–444.

    PubMed  CAS  Google Scholar 

  68. Petrossian, T. C., & Clarke, S. G. (2011). Uncovering the human methyltransferasome. Molecular and Cellular Proteomics, 10(M110), 000976.

    PubMed  Google Scholar 

  69. Wang, X., Feng, J., Xue, Y., Guan, Z., Zhang, D., Liu, Z., et al. (2016). Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature, 534, 575–578.

    PubMed  CAS  Google Scholar 

  70. Wang, P., Doxtader, K. A., & Nam, Y. (2016). Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Molecular Cell, 63, 306–317.

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Scholler, E., Weichmann, F., Treiber, T., Ringle, S., Treiber, N., Flatley, A., et al. (2018). Interactions, localization, and phosphorylation of the m(6)A generating METTL3-METTL14-WTAP complex. RNA, 24, 499–512.

    PubMed  PubMed Central  Google Scholar 

  72. Ruzicka, K., Zhang, M., Campilho, A., Bodi, Z., Kashif, M., Saleh, M., et al. (2017). Identification of factors required for m(6) A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. New Phytologist, 215, 157–172.

    PubMed  CAS  Google Scholar 

  73. Meng, T. G., Lu, X., Guo, L., Hou, G. M., Ma, X. S., Li, Q. N., et al. (2019). Mettl14 is required for mouse postimplantation development by facilitating epiblast maturation. The FASEB Journal, 33, 1179–1187.

    PubMed  CAS  Google Scholar 

  74. Lin, Z., Hsu, P. J., Xing, X., Fang, J., Lu, Z., Zou, Q., et al. (2017). Mettl3-/Mettl14-mediated mRNA N(6)-methyladenosine modulates murine spermatogenesis. Cell Research, 27, 1216–1230.

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Koranda, J. L., Dore, L., Shi, H., Patel, M. J., Vaasjo, L. O., Rao, M. N., et al. (2018). Mettl14 is essential for epitranscriptomic regulation of striatal function and learning. Neuron, 99(283–292), e285.

    Google Scholar 

  76. Wang, Y., Li, Y., Yue, M., Wang, J., Kumar, S., Wechsler-Reya, R. J., et al. (2018). N(6)-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nature Neuroscience, 21, 195–206.

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Ma, J. Z., Yang, F., Zhou, C. C., Liu, F., Yuan, J. H., Wang, F., et al. (2017). METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6)-methyladenosine-dependent primary MicroRNA processing. Hepatology, 65, 529–543.

    PubMed  CAS  Google Scholar 

  78. Weng, H., Huang, H., Wu, H., Qin, X., Zhao, B. S., Dong, L., et al. (2018). METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m(6)A modification. Cell Stem Cell, 22(191–205), e199.

    Google Scholar 

  79. Huang, H., Weng, H., Zhou, K., Wu, T., Zhao, B. S., Sun, M., et al. (2019). Histone H3 trimethylation at lysine 36 guides m(6)A RNA modification co-transcriptionally. Nature, 567, 414–419.

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Little, N. A., Hastie, N. D., & Davies, R. C. (2000). Identification of WTAP, a novel Wilms' tumour 1-associating protein. Human Molecular Genetics, 9, 2231–2239.

    PubMed  CAS  Google Scholar 

  81. Ping, X. L., Sun, B. F., Wang, L., Xiao, W., Yang, X., Wang, W. J., et al. (2014). Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Research, 24, 177–189.

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Schwartz, S., Mumbach, M. R., Jovanovic, M., Wang, T., Maciag, K., Bushkin, G. G., et al. (2014). Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites. Cell Rep, 8, 284–296.

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Yue, Y., Liu, J., Cui, X., Cao, J., Luo, G., Zhang, Z., et al. (2018). VIRMA mediates preferential m(6)A mRNA methylation in 3'UTR and near stop codon and associates with alternative polyadenylation. Cell Discov, 4, 10.

    PubMed  PubMed Central  Google Scholar 

  84. Patil, D. P., Chen, C. K., Pickering, B. F., Chow, A., Jackson, C., Guttman, M., et al. (2016). m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature, 537, 369–373.

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Xie, Y., Castro-Hernandez, R., Sokpor, G., Pham, L., Narayanan, R., Rosenbusch, J., et al. (2019). RBM15 modulates the function of chromatin remodeling factor BAF155 through RNA methylation in developing cortex. Molecular Neurobiology, 56, 7305–7320.

    PubMed  CAS  Google Scholar 

  86. Wen, J., Lv, R., Ma, H., Shen, H., He, C., Wang, J., et al. (2018). Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Molecular Cell, 69(1028–1038), e1026.

    Google Scholar 

  87. Shimba, S., Bokar, J. A., Rottman, F., & Reddy, R. (1995). Accurate and efficient N-6-adenosine methylation in spliceosomal U6 small nuclear RNA by HeLa cell extract in vitro. Nucleic Acids Research, 23, 2421–2426.

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Pendleton, K. E., Chen, B., Liu, K., Hunter, O. V., Xie, Y., Tu, B. P., et al. (2017). The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell, 169(824–835), e814.

    Google Scholar 

  89. Warda, A. S., Kretschmer, J., Hackert, P., Lenz, C., Urlaub, H., Hobartner, C., et al. (2017). Human METTL16 is a N(6)-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Reports, 18, 2004–2014.

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Ruszkowska, A., Ruszkowski, M., Dauter, Z., & Brown, J. A. (2018). Structural insights into the RNA methyltransferase domain of METTL16. Sci Rep, 8, 5311.

    PubMed  PubMed Central  Google Scholar 

  91. Mendel, M., Chen, K. M., Homolka, D., Gos, P., Pandey, R. R., McCarthy, A. A., et al. (2018). Methylation of structured RNA by the m(6)A writer METTL16 Is essential for mouse embryonic development. Molecular Cell, 71(986–1000), e1011.

    Google Scholar 

  92. Theler, D., Dominguez, C., Blatter, M., Boudet, J., & Allain, F. H. (2014). Solution structure of the YTH domain in complex with N6-methyladenosine RNA: a reader of methylated RNA. Nucleic Acids Research, 42, 13911–13919.

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Xu, C., Liu, K., Ahmed, H., Loppnau, P., Schapira, M., & Min, J. (2015). Structural Basis For The Discriminative Recognition of N6-methyladenosine RNA by the human YT521-B homology domain family of proteins. Journal of Biological Chemistry, 290, 24902–24913.

    PubMed  CAS  Google Scholar 

  94. Wang, X., Zhao, B. S., Roundtree, I. A., Lu, Z., Han, D., Ma, H., et al. (2015). N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell, 161, 1388–1399.

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Zhuang, M., Li, X., Zhu, J., Zhang, J., Niu, F., Liang, F., et al. (2019). The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3.1 expression. Nucleic Acids Research, 47, 4765–4777.

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Shi, H., Zhang, X., Weng, Y. L., Lu, Z., Liu, Y., Lu, Z., et al. (2018). m(6)A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature, 563, 249–253.

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Wu, R., Liu, Y., Zhao, Y., Bi, Z., Yao, Y., Liu, Q., et al. (2019). m(6)A methylation controls pluripotency of porcine induced pluripotent stem cells by targeting SOCS3/JAK2/STAT3 pathway in a YTHDF1/YTHDF2-orchestrated manner. Cell Death & Disease, 10, 171.

    Google Scholar 

  98. Wang, X., Lu, Z., Gomez, A., Hon, G. C., Yue, Y., Han, D., et al. (2014). N6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 505, 117–120.

    PubMed  Google Scholar 

  99. Du, H., Zhao, Y., He, J., Zhang, Y., Xi, H., Liu, M., et al. (2016). YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nature Communications, 7, 12626.

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Li, F., Zhao, D., Wu, J., & Shi, Y. (2014). Structure of the YTH domain of human YTHDF2 in complex with an m(6)A mononucleotide reveals an aromatic cage for m(6)A recognition. Cell Research, 24, 1490–1492.

    PubMed  PubMed Central  Google Scholar 

  101. Zhu, T., Roundtree, I. A., Wang, P., Wang, X., Wang, L., Sun, C., et al. (2014). Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Research, 24, 1493–1496.

    PubMed  PubMed Central  CAS  Google Scholar 

  102. Zhou, J., Wan, J., Gao, X., Zhang, X., Jaffrey, S. R., & Qian, S. B. (2015). Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature, 526, 591–594.

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Li, Z., Qian, P., Shao, W., Shi, H., He, X. C., Gogol, M., et al. (2018). Suppression of m(6)A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Research, 28, 904–917.

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Li, M., Zhao, X., Wang, W., Shi, H., Pan, Q., Lu, Z., et al. (2018). Ythdf2-mediated m(6)A mRNA clearance modulates neural development in mice. Genome Biology, 19, 69.

    PubMed  PubMed Central  Google Scholar 

  105. Zhao, B. S., Wang, X., Beadell, A. V., Lu, Z., Shi, H., Kuuspalu, A., et al. (2017). m(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature, 542, 475–478.

    PubMed  PubMed Central  CAS  Google Scholar 

  106. Ivanova, I., Much, C., Di Giacomo, M., Azzi, C., Morgan, M., Moreira, P. N., et al. (2017). The RNA m(6)A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Molecular Cell, 67(1059–1067), e1054.

    Google Scholar 

  107. Yang, Z., Li, J., Feng, G., Gao, S., Wang, Y., Zhang, S., et al. (2017). MicroRNA-145 modulates N(6)-methyladenosine levels by targeting the 3'-untranslated mRNA region of the N(6)-Methyladenosine Binding YTH domain family 2 protein. Journal of Biological Chemistry, 292, 3614–3623.

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Li, J., Meng, S., Xu, M., Wang, S., He, L., Xu, X., et al. (2018). Downregulation of N(6)-methyladenosine binding YTHDF2 protein mediated by miR-493-3p suppresses prostate cancer by elevating N(6)-methyladenosine levels. Oncotarget, 9, 3752–3764.

    PubMed  Google Scholar 

  109. Shi, H., Wang, X., Lu, Z., Zhao, B. S., Ma, H., Hsu, P. J., et al. (2017). YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Research, 27, 315–328.

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Li, A., Chen, Y. S., Ping, X. L., Yang, X., Xiao, W., Yang, Y., et al. (2017). Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Research, 27, 444–447.

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Xiao, W., Adhikari, S., Dahal, U., Chen, Y. S., Hao, Y. J., Sun, B. F., et al. (2016). Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Molecular Cell, 61, 507–519.

    PubMed  CAS  Google Scholar 

  112. Roundtree, I. A., Luo, G. Z., Zhang, Z., Wang, X., Zhou, T., Cui, Y., et al. (2017). YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. Elife. https://doi.org/10.7554/eLife.31311.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Shima, H., Matsumoto, M., Ishigami, Y., Ebina, M., Muto, A., Sato, Y., et al. (2017). S-adenosylmethionine synthesis is regulated by selective N(6)-adenosine methylation and mRNA degradation involving METTL16 and YTHDC1. Cell Reports, 21, 3354–3363.

    PubMed  CAS  Google Scholar 

  114. Kasowitz, S. D., Ma, J., Anderson, S. J., Leu, N. A., Xu, Y., Gregory, B. D., et al. (2018). Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genetics, 14, e1007412.

    PubMed  PubMed Central  Google Scholar 

  115. Wojtas, M. N., Pandey, R. R., Mendel, M., Homolka, D., Sachidanandam, R., & Pillai, R. S. (2017). Regulation of m(6)A transcripts by the 3'–>5' RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline. Molecular Cell, 68(374–387), e312.

    Google Scholar 

  116. Hsu, P. J., Zhu, Y., Ma, H., Guo, Y., Shi, X., Liu, Y., et al. (2017). Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Research, 27, 1115–1127.

    PubMed  PubMed Central  CAS  Google Scholar 

  117. Kretschmer, J., Rao, H., Hackert, P., Sloan, K. E., Hobartner, C., & Bohnsack, M. T. (2018). The m(6)A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5'-3' exoribonuclease XRN1. RNA, 24, 1339–1350.

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Tanabe, A., Tanikawa, K., Tsunetomi, M., Takai, K., Ikeda, H., Konno, J., et al. (2016). RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1alpha mRNA is translated. Cancer Letters, 376, 34–42.

    PubMed  CAS  Google Scholar 

  119. Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., et al. (2018). Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 20, 285–295.

    PubMed  PubMed Central  CAS  Google Scholar 

  120. Konig, J., Zarnack, K., Rot, G., Curk, T., Kayikci, M., Zupan, B., et al. (2010). iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nature Structural & Molecular Biology, 17, 909–915.

    Google Scholar 

  121. Alarcon, C. R., Goodarzi, H., Lee, H., Liu, X., Tavazoie, S., & Tavazoie, S. F. (2015). HNRNPA2B1 is a mediator of m(6)A-Dependent Nuclear RNA processing events. Cell, 162, 1299–1308.

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Wu, B., Su, S., Patil, D. P., Liu, H., Gan, J., Jaffrey, S. R., et al. (2018). Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nature Communications, 9, 420.

    PubMed  PubMed Central  Google Scholar 

  123. Liu, N., Zhou, K. I., Parisien, M., Dai, Q., Diatchenko, L., & Pan, T. (2017). N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Research, 45, 6051–6063.

    PubMed  PubMed Central  CAS  Google Scholar 

  124. Meyer, K. D., Patil, D. P., Zhou, J., Zinoviev, A., Skabkin, M. A., Elemento, O., et al. (2015). 5' UTR m(6)A promotes cap-independent translation. Cell, 163, 999–1010.

    PubMed  PubMed Central  CAS  Google Scholar 

  125. Wu, R., Li, A., Sun, B., Sun, J. G., Zhang, J., Zhang, T., et al. (2019). A novel m(6)A reader Prrc2a controls oligodendroglial specification and myelination. Cell Research, 29, 23–41.

    PubMed  CAS  Google Scholar 

  126. Zheng, G., Dahl, J. A., Niu, Y., Fedorcsak, P., Huang, C. M., Li, C. J., et al. (2013). ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Molecular Cell, 49, 18–29.

    PubMed  CAS  Google Scholar 

  127. Zou, S., Toh, J. D., Wong, K. H., Gao, Y. G., Hong, W., & Woon, E. C. (2016). N(6)-Methyladenosine: a conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5. Science Reports, 6, 25677.

    CAS  Google Scholar 

  128. Jia, G., Yang, C. G., Yang, S., Jian, X., Yi, C., Zhou, Z., et al. (2008). Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Letters, 582, 3313–3319.

    PubMed  PubMed Central  CAS  Google Scholar 

  129. Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M., Lindgren, C. M., et al. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316, 889–894.

    PubMed  PubMed Central  CAS  Google Scholar 

  130. Freathy, R. M., Timpson, N. J., Lawlor, D. A., Pouta, A., Ben-Shlomo, Y., Ruokonen, A., et al. (2008). Common variation in the FTO gene alters diabetes-related metabolic traits to the extent expected given its effect on BMI. Diabetes, 57, 1419–1426.

    PubMed  CAS  Google Scholar 

  131. Osborn, D. P., Roccasecca, R. M., McMurray, F., Hernandez-Hernandez, V., Mukherjee, S., Barroso, I., et al. (2014). Loss of FTO antagonises Wnt signaling and leads to developmental defects associated with ciliopathies. PLoS ONE, 9, e87662.

    PubMed  PubMed Central  Google Scholar 

  132. Fu, Y., Jia, G., Pang, X., Wang, R. N., Wang, X., Li, C. J., et al. (2013). FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat Commun, 4, 1798.

    PubMed  Google Scholar 

  133. Gulati, P., Avezov, E., Ma, M., Antrobus, R., Lehner, P., O'Rahilly, S., et al. (2014). Fat mass and obesity-related (FTO) shuttles between the nucleus and cytoplasm. Bioscience Reports. https://doi.org/10.1042/BSR20140111.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Mauer, J., Sindelar, M., Despic, V., Guez, T., Hawley, B. R., Vasseur, J. J., et al. (2019). FTO controls reversible m(6)Am RNA methylation during snRNA biogenesis. Nature Chemical Biology, 15, 340–347.

    PubMed  PubMed Central  CAS  Google Scholar 

  135. Widagdo, J., Zhao, Q. Y., Kempen, M. J., Tan, M. C., Ratnu, V. S., Wei, W., et al. (2016). Experience-dependent accumulation of N6-methyladenosine in the prefrontal cortex is associated with memory processes in mice. Journal of Neuroscience, 36, 6771–6777.

    PubMed  CAS  Google Scholar 

  136. Walters, B. J., Mercaldo, V., Gillon, C. J., Yip, M., Neve, R. L., Boyce, F. M., et al. (2017). The role of The RNA demethylase FTO (fat mass and obesity-associated) and mRNA methylation in hippocampal memory formation. Neuropsychopharmacology, 42, 1502–1510.

    PubMed  PubMed Central  CAS  Google Scholar 

  137. Zhao, X., Yang, Y., Sun, B. F., Shi, Y., Yang, X., Xiao, W., et al. (2014). FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Research, 24, 1403–1419.

    PubMed  PubMed Central  CAS  Google Scholar 

  138. Sun, L., Ma, L., Zhang, H., Cao, Y., Wang, C., Hou, N., et al. (2019). Fto deficiency reduces anxiety- and depression-like behaviors in mice via alterations in gut microbiota. Theranostics, 9, 721–733.

    PubMed  PubMed Central  CAS  Google Scholar 

  139. Spychala, A., & Ruther, U. (2019). FTO affects hippocampal function by regulation of BDNF processing. PLoS ONE, 14, e0211937.

    PubMed  PubMed Central  CAS  Google Scholar 

  140. Berulava, T., Ziehe, M., Klein-Hitpass, L., Mladenov, E., Thomale, J., Ruther, U., et al. (2013). FTO levels affect RNA modification and the transcriptome. European Journal of Human Genetics, 21, 317–323.

    PubMed  CAS  Google Scholar 

  141. Merkestein, M., McTaggart, J. S., Lee, S., Kramer, H. B., McMurray, F., Lafond, M., et al. (2014). Changes in gene expression associated with FTO overexpression in mice. PLoS ONE, 9, e97162.

    PubMed  PubMed Central  Google Scholar 

  142. Jiao, Y., Zhang, J., Lu, L., Xu, J., & Qin, L. (2016). The Fto gene regulates the proliferation and differentiation of pre-adipocytes in vitro. Nutrients, 8, 102.

    PubMed  PubMed Central  Google Scholar 

  143. Ben-Haim, M. S., Moshitch-Moshkovitz, S., & Rechavi, G. (2015). FTO: linking m6A demethylation to adipogenesis. Cell Research, 25, 3–4.

    PubMed  CAS  Google Scholar 

  144. Zhang, M., Zhang, Y., Ma, J., Guo, F., Cao, Q., Zhang, Y., et al. (2015). The demethylase activity of FTO (fat mass and obesity associated protein) is required for preadipocyte differentiation. PLoS ONE, 10, e0133788.

    PubMed  PubMed Central  Google Scholar 

  145. Wang, C. Y., Shie, S. S., Wen, M. S., Hung, K. C., Hsieh, I. C., Yeh, T. S., et al. (2015). Loss of FTO in adipose tissue decreases Angptl4 translation and alters triglyceride metabolism. Science Signal. https://doi.org/10.1126/scisignal.aab3357.

    Article  Google Scholar 

  146. Sachse, G., Church, C., Stewart, M., Cater, H., Teboul, L., Cox, R. D., et al. (2018). FTO demethylase activity is essential for normal bone growth and bone mineralization in mice. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Diseases, 1864, 843–850.

    CAS  Google Scholar 

  147. Gao, X., Shin, Y. H., Li, M., Wang, F., Tong, Q., & Zhang, P. (2010). The fat mass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice. PLoS ONE, 5, e14005.

    PubMed  PubMed Central  Google Scholar 

  148. Li, L., Zang, L., Zhang, F., Chen, J., Shen, H., Shu, L., et al. (2017). Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Human Molecular Genetics, 26, 2398–2411.

    PubMed  PubMed Central  CAS  Google Scholar 

  149. Yu, J., Chen, M., Huang, H., Zhu, J., Song, H., Zhu, J., et al. (2018). Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Research, 46, 1412–1423.

    PubMed  CAS  Google Scholar 

  150. Mathiyalagan, P., Adamiak, M., Mayourian, J., Sassi, Y., Liang, Y., Agarwal, N., et al. (2019). FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation, 139, 518–532.

    PubMed  PubMed Central  CAS  Google Scholar 

  151. Wang, X., Huang, N., Yang, M., Wei, D., Tai, H., Han, X., et al. (2017). FTO is required for myogenesis by positively regulating mTOR-PGC-1alpha pathway-mediated mitochondria biogenesis. Cell Death Diseases, 8, e2702.

    CAS  Google Scholar 

  152. Wu, W., Feng, J., Jiang, D., Zhou, X., Jiang, Q., Cai, M., et al. (2017). AMPK regulates lipid accumulation in skeletal muscle cells through FTO-dependent demethylation of N(6)-methyladenosine. Sci Rep, 7, 41606.

    PubMed  PubMed Central  CAS  Google Scholar 

  153. Faulds, K. J., Egelston, J. N., Sedivy, L. J., Mitchell, M. K., Garimella, S., Kozlowski, H., et al. (2018). Glycogen synthase kinase-3 (GSK-3) activity regulates mRNA methylation in mouse embryonic stem cells. Journal of Biological Chemistry, 293, 10731–10743.

    PubMed  CAS  PubMed Central  Google Scholar 

  154. Fan, H. Q., He, W., Xu, K. F., Wang, Z. X., Xu, X. Y., & Chen, H. (2015). FTO inhibits insulin secretion and promotes NF-kappaB activation through positively regulating ROS production in pancreatic beta cells. PLoS ONE, 10, e0127705.

    PubMed  PubMed Central  Google Scholar 

  155. Froy, O. (2012). Circadian rhythms and obesity in mammals. ISRN Obes, 2012, 437198.

    PubMed  PubMed Central  Google Scholar 

  156. Wang, C. Y., Shie, S., Hsieh, I. C., Tsai, M. L., & Wen, M. S. (2015). FTO modulates circadian rhythms and inhibits the CLOCK-BMAL1-induced transcription. Biochemical and Biophysical Research Communications, 464(3), 826–832. https://doi.org/10.1016/j.bbrc.2015.07.046.

    Article  PubMed  CAS  Google Scholar 

  157. Tang, C., Klukovich, R., Peng, H., Wang, Z., Yu, T., Zhang, Y., et al. (2018). ALKBH5-dependent m6A demethylation controls splicing and stability of long 3'-UTR mRNAs in male germ cells. Proc Natl Acad Sci U S A, 115, E325–E333.

    PubMed  CAS  Google Scholar 

  158. Thalhammer, A., Bencokova, Z., Poole, R., Loenarz, C., Adam, J., O'Flaherty, L., et al. (2011). Human AlkB homologue 5 is a nuclear 2-oxoglutarate dependent oxygenase and a direct target of hypoxia-inducible factor 1alpha (HIF-1alpha). PLoS ONE, 6, e16210.

    PubMed  PubMed Central  CAS  Google Scholar 

  159. Zhang, C., Samanta, D., Lu, H., Bullen, J. W., Zhang, H., Chen, I., et al. (2016). Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA. Proceedings of the National Academy of Sciences of the United States of America, 113, E2047–2056.

    PubMed  PubMed Central  CAS  Google Scholar 

  160. Zhang, C., Zhi, W. I., Lu, H., Samanta, D., Chen, I., Gabrielson, E., et al. (2016). Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget, 7, 64527–64542.

    PubMed  PubMed Central  Google Scholar 

  161. Li, X. C., Jin, F., Wang, B. Y., Yin, X. J., Hong, W., & Tian, F. J. (2019). The m6A demethylase ALKBH5 controls trophoblast invasion at the maternal-fetal interface by regulating the stability of CYR61 mRNA. Theranostics, 9, 3853–3865.

    PubMed  PubMed Central  CAS  Google Scholar 

  162. Lin, S., Liu, J., Jiang, W., Wang, P., Sun, C., Wang, X., et al. (2019). METTL3 promotes the proliferation and mobility of gastric cancer cells. Open Med (Wars), 14, 25–31.

    CAS  Google Scholar 

  163. Cheng, M., Sheng, L., Gao, Q., Xiong, Q., Zhang, H., Wu, M., et al. (2019). The m(6)A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-kappaB/MYC signaling network. Oncogene, 38, 3667–3680.

    PubMed  CAS  Google Scholar 

  164. Han, J., Wang, J. Z., Yang, X., Yu, H., Zhou, R., Lu, H. C., et al. (2019). METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Molecular Cancer, 18, 110.

    PubMed  PubMed Central  Google Scholar 

  165. Dahal, U., Le, K., & Gupta, M. (2019). RNA m6A methyltransferase METTL3 regulates invasiveness of melanoma cells by matrix metallopeptidase 2. Melanoma Research, 29, 382–389.

    PubMed  CAS  Google Scholar 

  166. Visvanathan, A., Patil, V., Abdulla, S., Hoheisel, J. D., & Somasundaram, K. (2019). N(6)-methyladenosine landscape of glioma stem-like cells: METTL3 is essential for the expression of actively transcribed genes and sustenance of the oncogenic signaling. Genes (Basel). https://doi.org/10.1038/onc.2017.351.

    Article  PubMed Central  Google Scholar 

  167. Visvanathan, A., Patil, V., Arora, A., Hegde, A. S., Arivazhagan, A., Santosh, V., et al. (2018). Essential role of METTL3-mediated m(6)A modification in glioma stem-like cells maintenance and radioresistance. Oncogene, 37, 522–533.

    PubMed  CAS  Google Scholar 

  168. Hua, W., Zhao, Y., Jin, X., Yu, D., He, J., Xie, D., et al. (2018). METTL3 promotes ovarian carcinoma growth and invasion through the regulation of AXL translation and epithelial to mesenchymal transition. Gynecologic Oncology, 151, 356–365.

    PubMed  CAS  Google Scholar 

  169. Liu, J., Eckert, M. A., Harada, B. T., Liu, S. M., Lu, Z., Yu, K., et al. (2018). m(6)A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nature Cell Biology, 20, 1074–1083.

    PubMed  PubMed Central  CAS  Google Scholar 

  170. Taketo, K., Konno, M., Asai, A., Koseki, J., Toratani, M., Satoh, T., et al. (2018). The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. International Journal of Oncology, 52, 621–629.

    PubMed  Google Scholar 

  171. Li, X., Tang, J., Huang, W., Wang, F., Li, P., Qin, C., et al. (2017). The M6A methyltransferase METTL3: acting as a tumor suppressor in renal cell carcinoma. Oncotarget, 8, 96103–96116.

    PubMed  PubMed Central  Google Scholar 

  172. Yue, B., Song, C., Yang, L., Cui, R., Cheng, X., Zhang, Z., et al. (2019). METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Molecular Cancer, 18, 142.

    PubMed  PubMed Central  Google Scholar 

  173. Liu, L., Wang, J., Sun, G., Wu, Q., Ma, J., Zhang, X., et al. (2019). m(6)A mRNA methylation regulates CTNNB1 to promote the proliferation of hepatoblastoma. Molecular Cancer, 18, 188.

    PubMed  PubMed Central  CAS  Google Scholar 

  174. Cai, J., Yang, F., Zhan, H., Situ, J., Li, W., Mao, Y., et al. (2019). RNA m(6)A methyltransferase METTL3 promotes the growth of prostate cancer by regulating Hedgehog pathway. Onco Targets Therapy, 12, 9143–9152.

    CAS  Google Scholar 

  175. Wang, J., Yan, S., Lu, H., Wang, S., & Xu, D. (2019). METTL3 attenuates LPS-induced inflammatory response in macrophages via NF-kappab signaling pathway. Mediators of Inflammation, 2019, 3120391.

    PubMed  PubMed Central  Google Scholar 

  176. Xie, W., Ma, L. L., Xu, Y. Q., Wang, B. H., & Li, S. M. (2019). METTL3 inhibits hepatic insulin sensitivity via N6-methyladenosine modification of Fasn mRNA and promoting fatty acid metabolism. Biochemical and Biophysical Research Communications, 518, 120–126.

    PubMed  CAS  Google Scholar 

  177. Miao, W., Chen, J., Jia, L., Ma, J., & Song, D. (2019). The m6A methyltransferase METTL3 promotes osteosarcoma progression by regulating the m6A level of LEF1. Biochemical and Biophysical Research Communications, 516, 719–725.

    PubMed  CAS  Google Scholar 

  178. Jin, D., Guo, J., Wu, Y., Du, J., Yang, L., Wang, X., et al. (2019). m(6)A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. Journal of Hematology & Oncology, 12, 135.

    CAS  Google Scholar 

  179. Zhao, W., Cui, Y., Liu, L., Ma, X., Qi, X., Wang, Y., et al. (2020). METTL3 facilitates oral squamous cell carcinoma tumorigenesis by enhancing c-Myc stability via YTHDF1-mediated m(6)A modification. Molecular Therapy - Nucleic Acids, 20, 1–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  180. Xie, H., Li, J., Ying, Y., Yan, H., Jin, K., Ma, X., et al. (2020). METTL3/YTHDF2 m(6) A axis promotes tumorigenesis by degrading SETD7 and KLF4 mRNAs in bladder cancer. Journal of Cellular and Molecular Medicine. https://doi.org/10.2139/ssrn.3429876.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Deng, R., Cheng, Y., Ye, S., Zhang, J., Huang, R., Li, P., et al. (2019). m(6)A methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways. Onco Targets Ther, 12, 4391–4402.

    PubMed  PubMed Central  CAS  Google Scholar 

  182. Zhu, W., Si, Y., Xu, J., Lin, Y., Wang, J. Z., Cao, M., et al. (2020). Methyltransferase like 3 promotes colorectal cancer proliferation by stabilizing CCNE1 mRNA in an m6A-dependent manner. Journal of Cellular and Molecular Medicine, 24, 3521–3533.

    PubMed  PubMed Central  CAS  Google Scholar 

  183. Li, T., Hu, P. S., Zuo, Z., Lin, J. F., Li, X., Wu, Q. N., et al. (2019). METTL3 facilitates tumor progression via an m(6)A-IGF2BP2-dependent mechanism in colorectal carcinoma. Molecular Cancer, 18, 112.

    PubMed  PubMed Central  Google Scholar 

  184. Hao, H., Hao, S., Chen, H., Chen, Z., Zhang, Y., Wang, J., et al. (2019). N6-methyladenosine modification and METTL3 modulate enterovirus 71 replication. Nucleic Acids Research, 47, 362–374.

    PubMed  CAS  Google Scholar 

  185. Wei, W., Huo, B., & Shi, X. (2019). miR-600 inhibits lung cancer via downregulating the expression of METTL3. Cancer Management and Research, 11, 1177–1187.

    PubMed  PubMed Central  Google Scholar 

  186. Hesser, C. R., Karijolich, J., Dominissini, D., He, C., & Glaunsinger, B. A. (2018). N6-methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi's sarcoma-associated herpesvirus infection. PLoS Pathogens, 14, e1006995.

    PubMed  PubMed Central  Google Scholar 

  187. Lichinchi, G., Gao, S., Saletore, Y., Gonzalez, G. M., Bansal, V., Wang, Y., et al. (2016). Dynamics of the human and viral m(6)A RNA methylomes during HIV-1 infection of T cells. Nat Microbiol, 1, 16011.

    PubMed  PubMed Central  CAS  Google Scholar 

  188. Courtney, D. G., Kennedy, E. M., Dumm, R. E., Bogerd, H. P., Tsai, K., Heaton, N. S., et al. (2017). Epitranscriptomic enhancement of influenza A virus gene expression and replication. Cell Host & Microbe, 22(377–386), e375.

    Google Scholar 

  189. Imam, H., Khan, M., Gokhale, N. S., McIntyre, A. B. R., Kim, G. W., Jang, J. Y., et al. (2018). N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle. Proceedings of the National Academy of Sciences USA, 115, 8829–8834.

    CAS  Google Scholar 

  190. Lichinchi, G., Zhao, B. S., Wu, Y., Lu, Z., Qin, Y., He, C., et al. (2016). Dynamics of human and viral RNA methylation during Zika virus infection. Cell Host & Microbe, 20, 666–673.

    CAS  Google Scholar 

  191. Chen, X., Xu, M., Xu, X., Zeng, K., Liu, X., Sun, L., et al. (2020). METTL14 suppresses CRC progression via regulating N6-methyladenosine-dependent primary miR-375 processing. Molecular Therapy, 28, 599–612.

    PubMed  CAS  Google Scholar 

  192. Jo, H. J., Shim, H. E., Han, M. E., Kim, H. J., Kim, K. S., Baek, S., et al. (2013). WTAP regulates migration and invasion of cholangiocarcinoma cells. Journal of Gastroenterology, 48, 1271–1282.

    PubMed  CAS  Google Scholar 

  193. Xi, Z., Xue, Y., Zheng, J., Liu, X., Ma, J., & Liu, Y. (2016). WTAP expression predicts poor prognosis in malignant glioma patients. Journal of Molecular Neuroscience, 60, 131–136.

    PubMed  CAS  Google Scholar 

  194. Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., et al. (2018). Author correction: recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 20, 1098.

    PubMed  CAS  Google Scholar 

  195. Muller, S., Glass, M., Singh, A. K., Haase, J., Bley, N., Fuchs, T., et al. (2019). IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Research, 47, 375–390.

    PubMed  Google Scholar 

  196. Zhao, X., Chen, Y., Mao, Q., Jiang, X., Jiang, W., Chen, J., et al. (2018). Overexpression of YTHDF1 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Biomarkers, 21, 859–868.

    PubMed  CAS  Google Scholar 

  197. Nishizawa, Y., Konno, M., Asai, A., Koseki, J., Kawamoto, K., Miyoshi, N., et al. (2018). Oncogene c-Myc promotes epitranscriptome m(6)A reader YTHDF1 expression in colorectal cancer. Oncotarget, 9, 7476–7486.

    PubMed  Google Scholar 

  198. Li, Z., Weng, H., Su, R., Weng, X., Zuo, Z., Li, C., et al. (2017). FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell, 31, 127–141.

    PubMed  Google Scholar 

  199. Liu, J., Ren, D., Du, Z., Wang, H., Zhang, H., & Jin, Y. (2018). m(6)A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression. Biochemical and Biophysical Research Communications, 502, 456–464.

    PubMed  CAS  Google Scholar 

  200. Zhou, S., Bai, Z. L., Xia, D., Zhao, Z. J., Zhao, R., Wang, Y. Y., et al. (2018). TO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting beta-catenin through mRNA demethylation. Molecular Carcinogenesis, 57, 590–597.

    PubMed  CAS  Google Scholar 

  201. Tang, X., Liu, S., Chen, D., Zhao, Z., & Zhou, J. (2019). The role of the fat mass and obesity-associated protein in the proliferation of pancreatic cancer cells. Oncology Letters, 17, 2473–2478.

    PubMed  CAS  Google Scholar 

  202. Zhuang, C., Zhuang, C., Luo, X., Huang, X., Yao, L., Li, J., et al. (2019). N6-methyladenosine demethylase FTO suppresses clear cell renal cell carcinoma through a novel FTO-PGC-1alpha signalling axis. Journal of Cellular and Molecular Medicine, 23, 2163–2173.

    PubMed  PubMed Central  CAS  Google Scholar 

  203. Niu, Y., Lin, Z., Wan, A., Chen, H., Liang, H., Sun, L., et al. (2019). RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Molecular Cancer, 18, 46.

    PubMed  PubMed Central  Google Scholar 

  204. Zhang, S., Zhao, B. S., Zhou, A., Lin, K., Zheng, S., Lu, Z., et al. (2017). m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1s. Cancer Cell, 31(591–606), e596.

    Google Scholar 

Download references

Acknowledgements

This work was supported by an extramural grant from DST-SERB, Government of India [Grant Number CRG/2018/000492 (to P.K.)]. P.K. acknowledges infrastructural and financial support from BITS Pilani-Hyderabad Campus, India. K.R. acknowledges fellowship from BITS Pilani-Hyderabad Campus, India. We apologize to our colleagues whose work we could not mention because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush Khandelia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthiya, R., Khandelia, P. m6A RNA Methylation: Ramifications for Gene Expression and Human Health. Mol Biotechnol 62, 467–484 (2020). https://doi.org/10.1007/s12033-020-00269-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-020-00269-5

Keywords

Navigation