Skip to main content
Log in

Codon Optimization, Cloning, Expression, Purification, and Secondary Structure Determination of Human ETS2 Transcription Factor

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Transcription factor ETS2 regulates genes involved in development, differentiation, angiogenesis, proliferation, and apoptosis. In addition, it is one of the core reprogramming factors responsible for the generation of human cardiomyocytes from adult somatic cells. In this study, we report the heterologous expression of human ETS2 in E. coli to produce a highly pure recombinant protein. To accomplish this, the codon-optimized 1507 bp coding sequence of the human ETS2 gene in fusion with a His-tag, a cell-penetrating peptide, and a nuclear localization sequence was cloned in the protein expression vector and transformed into E. coli strain BL21(DE3) for expression. The recombinant protein was purified to homogeneity under native conditions using immobilized metal ion affinity chromatography, and its identity was confirmed by Western blotting with an ETS2 antibody. Using far-UV circular dichroism spectroscopy, we have demonstrated that the recombinant protein has retained its secondary structure, predominantly comprising of random coils and β-sheets. Prospectively, this biological recombinant ETS2 protein can substitute viral and genetic forms of ETS2 in a cell reprogramming process to facilitate the generation of clinical-grade cells. It can also be used to investigate its molecular role in various biological processes and diseases and for biochemical and structural studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Borgohain, M. P., Narayan, G., Kumar, H. K., Dey, C., & Thummer, R. P. (2018). Maximizing expression and yield of human recombinant proteins from bacterial cell factories for biomedical applications. In P. Kumar, J. K. Patra & P. Chandra (Eds.), Advances in microbial biotechnology (pp. 447–486). Apple Academic Press.

  2. Nezafat, N., Sadraeian, M., Rahbar, M. R., Khoshnoud, M. J., Mohkam, M., Gholami, A., et al. (2015). Production of a novel multi-epitope peptide vaccine for cancer immunotherapy in TC-1 tumor-bearing mice. Biologicals, 43, 11–17.

    Article  CAS  Google Scholar 

  3. Borgohain, M. P., Haridhasapavalan, K. K., Dey, C., Adhikari, P., & Thummer, R. P. (2019). An insight into DNA-free reprogramming approaches to generate integration-free induced pluripotent stem cells for prospective biomedical applications. Stem Cell Reviews and Reports, 15, 286–313.

    Article  CAS  Google Scholar 

  4. Dey, C., Narayan, G., Krishna Kumar, H., Borgohain, M., Lenka, N. & Thummer, R. P. (2017). Cell-penetrating peptides as a tool to deliver biologically active recombinant proteins to generate transgene-free induced pluripotent stem cells. Life Sciences Group: Studies on Stem Cells Research and Therapy, 3(1), 006–015.

    Google Scholar 

  5. Maertens, B., Spriestersbach, A., von Groll, U., Roth, U., Kubicek, J., Gerrits, M., et al. (2010). Gene optimization mechanisms: A multi-gene study reveals a high success rate of full-length human proteins expressed in Escherichia coli. Protein Science, 19, 1312–1326.

    Article  CAS  Google Scholar 

  6. Burgess-Brown, N. A., Sharma, S., Sobott, F., Loenarz, C., Oppermann, U., & Gileadi, O. (2008). Codon optimization can improve expression of human genes in Escherichia coli: A multi-gene study. Protein Expression and Purification, 59, 94–102.

    Article  CAS  Google Scholar 

  7. Donaldson, L. W., Petersen, J. M., Graves, B. J., & McIntosh, L. P. (1996). Solution structure of the ETS domain from murine Ets-1: A winged helix-turn-helix DNA binding motif. The EMBO Journal, 15, 125–134.

    Article  CAS  Google Scholar 

  8. Yamamoto, H., Flannery, M. L., Kupriyanov, S., Pearce, J., McKercher, S. R., Henkel, G. W., et al. (1998). Defective trophoblast function in mice with a targeted mutation of Ets2. Genes & Development, 12, 1315–1326.

    Article  CAS  Google Scholar 

  9. Georgiades, P., & Rossant, J. (2006). Ets2 is necessary in trophoblast for normal embryonic anteroposterior axis development. Development, 133, 1059–1068.

    Article  CAS  Google Scholar 

  10. Sheydina, A., Volkova, M., Jiang, L., Juhasz, O., Zhang, J., Tae, H. J., et al. (2012). Linkage of cardiac gene expression profiles and ETS2 with lifespan variability in rats. Aging Cell, 11, 350–359.

    Article  CAS  Google Scholar 

  11. Islas, J. F., Liu, Y., Weng, K.-C., Robertson, M. J., Zhang, S., Prejusa, A., et al. (2012). Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proceedings of the National Academy of Sciences, 109, 13016–13021.

    Article  Google Scholar 

  12. Kidder, B. L. (2020). Direct reprogramming of mouse embryonic fibroblasts to induced trophoblast stem cells. In B. L. Kidder (Ed.), Stem cell transcriptional networks (pp. 285–292). Springer.

  13. Seth, A., & Watson, D. K. (2005). ETS transcription factors and their emerging roles in human cancer. European Journal of Cancer, 41, 2462–2478.

    Article  CAS  Google Scholar 

  14. Kabbout, M., Garcia, M. M., Fujimoto, J., Liu, D. D., Woods, D., Chow, C.-W., et al. (2013). Ets2 mediated tumor suppressive function and met oncogene inhibition in human non-small cell lung cancer. Clinical Cancer Research, 19, 3383–3395.

    Article  CAS  Google Scholar 

  15. Fry, E. A., & Inoue, K. (2018). Aberrant expression of ETS1 and ETS2 proteins in cancer. Cancer Reports and Reviews, 2(3), 5–10.

  16. Liu, D. D., & Kang, Y. (2017). Ets2 anchors the prometastatic function of mutant p53 in osteosarcoma. Genes & Development, 31, 1823–1824.

    Article  CAS  Google Scholar 

  17. Do, P. M., Varanasi, L., Fan, S., Li, C., Kubacka, I., Newman, V., et al. (2012). Mutant p53 cooperates with ETS2 to promote etoposide resistance. Genes & Development, 26, 830–845.

    Article  CAS  Google Scholar 

  18. Ma, X., Jiang, Z., Li, N., Jiang, W., Gao, P., Yang, M., et al. (2019). Ets2 suppresses inflammatory cytokines through MAPK/NF-κB signaling and directly binds to the IL-6 promoter in macrophages. Aging (Albany NY), 11, 10610.

    Article  CAS  Google Scholar 

  19. Bosnali, M., & Edenhofer, F. (2008). Generation of transducible versions of transcription factors Oct4 and Sox2. Biological Chemistry, 389, 851–861.

    Article  CAS  Google Scholar 

  20. Münst, B., Thier, M. C., Winnemöller, D., Helfen, M., Thummer, R. P., & Edenhofer, F. (2016). Nanog induces suppression of senescence through downregulation of p27KIP1 expression. Journal of Cell Science, 129, 912–920.

    Article  CAS  Google Scholar 

  21. Peitz, M., Münst, B., Thummer, R. P., Helfen, M., & Edenhofer, F. (2014). Cell-permeant recombinant Nanog protein promotes pluripotency by inhibiting endodermal specification. Stem Cell Research, 12, 680–689.

    Article  CAS  Google Scholar 

  22. Galluccio, M., Pochini, L., Amelio, L., Accardi, R., Tommasino, M., & Indiveri, C. (2009). Over-expression in E. coli and purification of the human OCTN1 transport protein. Protein Expression and Purification, 68, 215–220.

    Article  CAS  Google Scholar 

  23. Wu, X., Nie, C., Huang, Z., Nie, Y., Yan, Q., Xiao, Y., et al. (2009). Expression and purification of human keratinocyte growth factor 2 by fusion with SUMO. Molecular Biotechnology, 42, 68–74.

    Article  CAS  Google Scholar 

  24. Chang, Y.-H., Wang, Y.-L., Lin, J.-Y., Chuang, L.-Y., & Hwang, C.-C. (2010). Expression, purification, and characterization of a human recombinant 17β-hydroxysteroid dehydrogenase type 1 in Escherichia coli. Molecular Biotechnology, 44, 133–139.

    Article  CAS  Google Scholar 

  25. Galluccio, M., Amelio, L., Scalise, M., Pochini, L., Boles, E., & Indiveri, C. (2012). Over-expression in E. coli and purification of the human OCTN2 transport protein. Molecular Biotechnology, 50, 1–7.

    Article  CAS  Google Scholar 

  26. Kim, Y. V., Gasparian, M. E., Bocharov, E. V., Chertkova, R. V., Tkach, E. N., Dolgikh, D. A., et al. (2015). New strategy for high-level expression and purification of biologically active monomeric TGF-β1/C77S in Escherichia coli. Molecular Biotechnology, 57, 160–171.

    Article  CAS  Google Scholar 

  27. Zamani, M., Berenjian, A., Hemmati, S., Nezafat, N., Ghoshoon, M. B., Dabbagh, F., et al. (2015). Cloning, expression, and purification of a synthetic human growth hormone in Escherichia coli using response surface methodology. Molecular Biotechnology, 57, 241–250.

    Article  CAS  Google Scholar 

  28. Samuel, R. V. M., Farrukh, S. Y., Rehmat, S., Hanif, M. U., Ahmed, S. S., Musharraf, S. G., et al. (2018). Soluble production of human recombinant VEGF-A121 by using SUMO fusion technology in Escherichia coli. Molecular Biotechnology, 60, 585–594.

    Article  CAS  Google Scholar 

  29. Bhat, E. A., Sajjad, N., Sabir, J. S., Kamli, M. R., Hakeem, K. R., Rather, I. A., et al. (2020). Molecular cloning, expression, overproduction and characterization of human TRAIP Leucine zipper protein. Saudi Journal of Biological Sciences, 27(6), 1562–1565.

    Article  CAS  Google Scholar 

  30. Curcio, R., Aiello, D., Vozza, A., Muto, L., Martello, E., Cappello, A. R., et al. (2020). Cloning, purification, and characterization of the catalytic C-terminal domain of the human 3-hydroxy-3-methyl glutaryl-CoA reductase: An effective, fast, and easy method for testing hypocholesterolemic compounds. Molecular Biotechnology, 62, 119–131.

    Article  CAS  Google Scholar 

  31. Guen, V. J., Gamble, C., Flajolet, M., Unger, S., Thollet, A., Ferandin, Y., et al. (2013). CDK10/cyclin M is a protein kinase that controls ETS2 degradation and is deficient in STAR syndrome. Proceedings of the National Academy of Sciences, 110, 19525–19530.

    Article  CAS  Google Scholar 

  32. Vasina, J. A., & Baneyx, F. (1997). Expression of aggregation-prone recombinant proteins at low temperatures: A comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expression and Purification, 9(2), 211–218.

    Article  CAS  Google Scholar 

  33. Sørensen, H. P., & Mortensen, K. K. (2005). Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial Cell Factories, 4, 1.

    Article  CAS  Google Scholar 

  34. San-Miguel, T., Pérez-Bermúdez, P., & Gavidia, I. (2013). Production of soluble eukaryotic recombinant proteins in E. coli is favoured in early log-phase cultures induced at low temperature. Springerplus, 2, 89.

    Article  CAS  Google Scholar 

  35. Wingfield, P. T. (2015). Overview of the purification of recombinant proteins. Current Protocols in Protein Science, 80, 6.1. 1–6.1. 35.

    Article  Google Scholar 

  36. Araki, Y., Hamafuji, T., Noguchi, C., & Shimizu, N. (2012). Efficient recombinant production in mammalian cells using a novel IR/MAR gene amplification method. PLoS One, 7, e41787.

    Article  CAS  Google Scholar 

  37. Xu, D., Dwyer, J., Li, H., Duan, W., & Liu, J.-P. (2008). Ets2 maintains hTERT gene expression and breast cancer cell proliferation by interacting with c-Myc. Journal of Biological Chemistry, 283, 23567–23580.

    Article  CAS  Google Scholar 

  38. Serna, N., Sánchez-García, L., Unzueta, U., Díaz, R., Vázquez, E., Mangues, R., et al. (2018). Protein-based therapeutic killing for cancer therapies. Trends in Biotechnology, 36, 318–335.

    Article  CAS  Google Scholar 

  39. Stock, K., Nolden, L., Edenhofer, F., Quandel, T., & Brüstle, O. (2010). Transcription factor-based modulation of neural stem cell differentiation using direct protein transduction. Cellular and Molecular Life Sciences, 67, 2439–2449.

    Article  CAS  Google Scholar 

  40. Kelly, S. M., Jess, T. J., & Price, N. C. (2005). How to study proteins by circular dichroism. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1751, 119–139.

    Article  CAS  Google Scholar 

  41. Greenfield, N. J. (2006). Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1, 2876.

    Article  CAS  Google Scholar 

  42. Micsonai, A., Wien, F., Bulyáki, É., Kun, J., Moussong, É., Lee, Y.-H., et al. (2018). BeStSel: A web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Research, 46, W315–W322.

    Article  CAS  Google Scholar 

  43. Louis-Jeune, C., Andrade-Navarro, M. A., & Perez-Iratxeta, C. (2012). Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins: Structure Function, and Bioinformatics, 80, 374–381.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the members of the Laboratory for Stem Cell Engineering and Regenerative Medicine (SCERM) for their critical reading and excellent support. This work was supported by a research grant from Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (Early Career Research Award; ECR/2015/000193).

Author information

Authors and Affiliations

Authors

Contributions

KKH was responsible for conception and design, collection and/or assembly of data, data analysis and interpretation, manuscript writing, and final approval of the manuscript; PKS was responsible for collection and/or assembly of data, data analysis and interpretation, and final editing and approval of the manuscript; RPT was responsible for conception and design, data analysis and interpretation, manuscript writing, final approval of manuscript, and financial support. All the authors gave consent for publication.

Corresponding author

Correspondence to Rajkumar P. Thummer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haridhasapavalan, K.K., Sundaravadivelu, P.K. & Thummer, R.P. Codon Optimization, Cloning, Expression, Purification, and Secondary Structure Determination of Human ETS2 Transcription Factor. Mol Biotechnol 62, 485–494 (2020). https://doi.org/10.1007/s12033-020-00266-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-020-00266-8

Keywords

Navigation