Skip to main content

An Experimental Study Comparing the Expansion of Peripheral Blood Natural Killer (NK) Cells Cultured with Artificial Antigen-Presenting Cells, in the Presence or Absence of Bone Marrow Mesenchymal Stem Cells (MSCs)


NK cells have been seen as potential agents in adoptive immunotherapy for cancer. The main challenge for the success of this approach is to obtain a great quantity of activated NK cells for adoptive transfer. The present study had aimed to evaluate the effect of a feeder layer of irradiated MSCs in the in vitro expansion of NK cells. MSCs were obtained from the bone marrow (BM) cells remaining in the bag and filter used in the transplantation of hematopoietic stem cells. NK cells were obtained from peripheral blood (PB) of healthy volunteers. NK expansion and activation were stimulated by culture with artificial antigen-presenting cells (aAPCs) and IL-2, in the presence or absence of BM-MSCs. NK cell proliferation, phenotypic expression and cytotoxic activity were evaluated. Both culture conditions showed high NK purity with predominance of NK CD56brightCD16+ subset post expansion. However, cultures without the presence of MSCs showed higher NK proliferation, expression of activation markers (CD16 and NKG2D) and related cytotoxic activity. In this experimental study, the presence of a feeder layer of irradiated BM-MSCs interfered negatively in the expansion of PB-NKs, limiting their growth and activation. Further investigation is needed to understand the mechanisms of NK-MSC interaction and its implications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

The datasets supporting the conclusions of this article are included within the article.



Natural killer


Peripheral blood


Killer cell immunoglobulin-like receptor


Human leukocyte antigen class I


Antibody-dependent cellular cytotoxicity


Graft versus leukemia


Graft versus host disease


Hematopoietic stem cell transplantation


White blood cells


Artificial antigen-presenting cells


Membrane-bound IL-21


Mesenchymal stem cells


Bone marrow


Fetal bovine serum


Peripheral blood mononuclear cells

CD3dep PB-MNCs:

CD3-depleted PB-MNCs


Median fluorescence intensity


Cord blood


Umbilical cord


Indoleamine 2,3-dioxygenase


Prostaglandin E2


  1. Vivier, E., Tomasello, E., Baratin, M., Walzer, T., & Ugolini, S. (2008). Functions of natural killer cells. Nature Immunology,9, 503–510.

    Article  CAS  Google Scholar 

  2. Luci, C., & Tomasello, E. (2008). Natural killer cells: Detectors of stress. International Journal of Biochemistry & Cell Biology,40, 2335–2340.

    Article  CAS  Google Scholar 

  3. Campbell, K. S., & Hasegawa, J. (2013). Natural killer cell biology: An update and future directions. The Journal of Allergy and Clinical Immunology,132, 536–544.

    Article  CAS  Google Scholar 

  4. Parodi, M., Meazza, R., Vitale, C., Pietra, G., Carrega, P., & Vitale, M. (2019). Isolation, expansion, and characterization of natural killer cells and their precursors as a tool to study cancer immunosurveillance. Methods in Molecular Biology, 1884, 87–117.

    Article  Google Scholar 

  5. Yoon, S. R., Kim, T. D., & Choi, I. (2015). Understanding of molecular mechanisms in natural killer cell therapy. Experimental & Molecular Medicine,47, e141.

    Article  CAS  Google Scholar 

  6. Granzin, M., Wagner, J., Köhl, U., Cerwenka, A., Huppert, V., & Ullrich, E. (2017). Shaping of natural killer cell antitumor activity by ex vivo cultivation. Frontiers in Immunology,8, 458.

    Article  Google Scholar 

  7. Baggio, L., Laureano, Á., Silla, L. M. D. R., & Lee, D. A. (2017). Natural killer cell adoptive immunotherapy: Coming of age. Clinical Immunology,177, 3–11.

    Article  CAS  Google Scholar 

  8. Ferreira-Teixeira, M., Paiva-Oliveira, D., Parada, B., Alves, V., Sousa, V., Chijioke, O., et al. (2016). Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells. BMC Medicine,14, 163.

    Article  Google Scholar 

  9. Shevtsov, M., & Multhoff, G. (2016). Immunological and translational aspects of NK cell-based antitumor immunotherapies. Frontiers in Immunology,7, 492.

    PubMed  PubMed Central  Google Scholar 

  10. Moretta, L., Pietra, G., Montaldo, E., Vacca, P., Pende, D., Falco, M., et al. (2014). Human NK cells: From surface receptors to the therapy of leukemias and solid tumors. Frontiers in Immunology,5, 87.

    Article  Google Scholar 

  11. Denman, C. J., Senyukov, V. V., Somanchi, S. S., Phatarpekar, P. V., Kopp, L. M., Johnson, J. L., et al. (2012). Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS ONE,7, e30264.

    Article  CAS  Google Scholar 

  12. Liu, Y., Wu, H. W., Sheard, M. A., Sposto, R., Somanchi, S. S., Cooper, L. J., et al. (2013). Growth and activation of natural killer cells ex vivo from children with neuroblastoma for adoptive cell therapy. Clinical Cancer Research,19, 2132–2143.

    Article  CAS  Google Scholar 

  13. Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., et al. (2005). Therapy ISfC: Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy,7, 393–395.

    Article  CAS  Google Scholar 

  14. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy,8, 315–317.

    Article  CAS  Google Scholar 

  15. Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells—current trends and future prospective. Bioscience Reports.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Thomas, H., Jäger, M., Mauel, K., Brandau, S., Lask, S., & Flohé, S. B. (2014). Interaction with mesenchymal stem cells provokes natural killer cells for enhanced IL-12/IL-18-induced interferon-gamma secretion. Mediators of Inflammation,2014, 143463.

    Article  Google Scholar 

  17. Nauta, A. J., & Fibbe, W. E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood,110, 3499–3506.

    Article  CAS  Google Scholar 

  18. Najar, M., Raicevic, G., Crompot, E., Fayyad-Kazan, H., Bron, D., Toungouz, M., et al. (2016). The immunomodulatory potential of mesenchymal stromal cells: A story of a regulatory network. Journal of Immunotherapy,39, 45–59.

    Article  CAS  Google Scholar 

  19. Cui, R., Rekasi, H., Hepner-Schefczyk, M., Fessmann, K., Petri, R. M., Bruderek, K., et al. (2016). Human mesenchymal stromal/stem cells acquire immunostimulatory capacity upon cross-talk with natural killer cells and might improve the NK cell function of immunocompromised patients. Stem Cell Research & Therapy,7, 88.

    Article  Google Scholar 

  20. Zhao, K., & Liu, Q. (2016). The clinical application of mesenchymal stromal cells in hematopoietic stem cell transplantation. Journal of Hematology & Oncology,9, 46.

    Article  Google Scholar 

  21. Chatterjee, D., Marquardt, N., Tufa, D. M., Beauclair, G., Low, H. Z., Hatlapatka, T., et al. (2014). Role of gamma-secretase in human umbilical-cord derived mesenchymal stem cell mediated suppression of NK cell cytotoxicity. Cell Communication and Signaling,12, 63.

    Article  Google Scholar 

  22. Choi, I., Yoon, S. R., Park, S. Y., Kim, H., Jung, S. J., Jang, Y. J., et al. (2014). Donor-derived natural killer cells infused after human leukocyte antigen-haploidentical hematopoietic cell transplantation: A dose-escalation study. Biology of Blood and Marrow Transplantation,20, 696–704.

    Article  CAS  Google Scholar 

  23. Spaggiari, G. M., Capobianco, A., Becchetti, S., Mingari, M. C., & Moretta, L. (2006). Mesenchymal stem cell-natural killer cell interactions: Evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood,107, 1484–1490.

    Article  CAS  Google Scholar 

  24. Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N., & Papamichail, M. (2006). Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells,24, 74–85.

    Article  Google Scholar 

  25. Spaggiari, G. M., Capobianco, A., Abdelrazik, H., Becchetti, F., Mingari, M. C., & Moretta, L. (2008). Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: Role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood,111, 1327–1333.

    Article  CAS  Google Scholar 

  26. Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood,105, 1815–1822.

    Article  CAS  Google Scholar 

  27. Boissel, L., Tuncer, H. H., Betancur, M., Wolfberg, A., & Klingemann, H. (2008). Umbilical cord mesenchymal stem cells increase expansion of cord blood natural killer cells. Biology of Blood and Marrow Transplantation,14, 1031–1038.

    Article  CAS  Google Scholar 

  28. Rasmusson, I., Ringdén, O., Sundberg, B., & Le Blanc, K. (2003). Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation,76, 1208–1213.

    Article  Google Scholar 

  29. Friedman, R., Betancur, M., Boissel, L., Tuncer, H., Cetrulo, C., & Klingemann, H. (2007). Umbilical cord mesenchymal stem cells: Adjuvants for human cell transplantation. Biology of Blood and Marrow Transplantation,13, 1477–1486.

    Article  Google Scholar 

  30. Smyth, M. J., Hayakawa, Y., Takeda, K., & Yagita, H. (2002). New aspects of natural-killer-cell surveillance and therapy of cancer. Nature Reviews Cancer,2, 850–861.

    Article  CAS  Google Scholar 

  31. Takahashi, E., Kuranaga, N., Satoh, K., Habu, Y., Shinomiya, N., Asano, T., et al. (2007). Induction of CD16+ CD56bright NK cells with antitumour cytotoxicity not only from CD16- CD56bright NK Cells but also from CD16- CD56dim NK cells. Scandinavian Journal of Immunology,65, 126–138.

    Article  CAS  Google Scholar 

  32. Baume, D. M., Robertson, M. J., Levine, H., Manley, T. J., Schow, P. W., & Ritz, J. (1992). Differential responses to interleukin 2 define functionally distinct subsets of human natural killer cells. European Journal of Immunology,22, 1–6.

    Article  CAS  Google Scholar 

Download references


The authors thank the volunteers for their donation of blood.


This work was financially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Financiadora de Estudos e Projetos (Finep) and Fundo de Incentivo à Pesquisa e Eventos do Hospital de Clínicas de Porto Alegre (FIPE-HCPA).

Author information

Authors and Affiliations



JFP, VSV, JMF and LMRS designed the study. JFP coordinated the collection of blood samples, performed the BM-MSCs generation and characterization, isolation of MNCs from blood, NK enrichment and culture expansion. FS and ADG performed the flow cytometry. JFP and GL performed the cytotoxicity assay. JFP and FSP analyzed the flow cytometry data. JFP conduct statistical analyses. JFP and LMRS drafted this manuscript.

Corresponding author

Correspondence to Lucia Mariano da Rocha Silla.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics Approval

Informed consent was obtained from all volunteers. The study was performed according to the declaration of Helsinki and was approved by the Research Ethics Committee of Hospital de Clínicas de Porto Alegre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedroso, J.F., de Souza Valim, V., Pezzi, A. et al. An Experimental Study Comparing the Expansion of Peripheral Blood Natural Killer (NK) Cells Cultured with Artificial Antigen-Presenting Cells, in the Presence or Absence of Bone Marrow Mesenchymal Stem Cells (MSCs). Mol Biotechnol 62, 306–315 (2020).

Download citation

  • Published:

  • Issue Date:

  • DOI: