Advertisement

Molecular Biotechnology

, Volume 61, Issue 10, pp 742–753 | Cite as

Expression of Breast Cancer-Related Epitopes Targeting the IGF-1 Receptor in Chimeric Human Parvovirus B19 Virus-Like Particles

  • Jorge Alberto Salazar-GonzálezEmail author
  • Alail Antonio Ruiz-Cruz
  • Ismael Bustos-Jaimes
  • Leticia Moreno-FierrosEmail author
Original paper
  • 117 Downloads

Abstract

Breast cancer is a worldwide health problem, and the complexity of the disease, as well as the lack of treatment specificity, generates an urgent need for developing prophylactic and therapeutic measures. Searching for novel epitope-based approaches able to induce tumour immunity, we designed virus-like particles (VLPs) derived from Human parvovirus B19 assembled of chimeric VP2 proteins displaying two epitopes from the insulin-like growth factor-1 receptor (IGF-1R). Here, we present the generation of two chimeric VP2s that retain the stability, solubility and conditions of purification and assembly of the native VP2. We generated versatile chimeric multiepitope anti-cancer vaccine candidates, which prevented and delayed tumour growth when used in a prophylactic scheme of 4 weekly immunizations prior to 4T1 cell inoculation in female BALB/c mice. The presence of specific antibodies against the displayed epitopes suggests their participation in the protective effect; in contrast, no significant proliferative T-cell responses were recorded following stimulation by specific epitopes. The results comprise an approach whereby fusing desired epitopes from cancer to the N-terminus of B19 VP2 protein can generate a library of chimeric VP2-desired epitopes for further assembly in a designed and personalized epitope delivery system.

Keywords

Breast cancer Vaccine VLPs Multiepitope IGF-1R 

Notes

Acknowledgement

This work was supported by CONACYT CB283319 and UNAM PAPIIT IN223319. J.A. Salazar-González is a postdoctoral fellow and received a UNAM DGAPA scholarship. Thanks to Damaris Ilhuicatzi Alvarado for the technical support.

References

  1. 1.
    Chakraborty, S., & Rahman, T. (2012). The difficulties in cancer treatment. Ecancermedicalscience, 6, 16.  https://doi.org/10.3332/ecancer.2012.ed16.Google Scholar
  2. 2.
    Maeda, H., & Khatami, M. (2018). Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clinical and Translational Medicine, 7, 11.  https://doi.org/10.1186/s40169-018-0185-6.CrossRefGoogle Scholar
  3. 3.
    Nahta, R., Yu, D., Hung, M. C., Hortobagyi, G. N., & Esteva, F. J. (2006). Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nature Clinical Practice Oncology, 3, 269–280.CrossRefGoogle Scholar
  4. 4.
    Farabaugh, S. M., Boone, D. N., & Lee, A. V. (2015). Role of IGF1R in breast cancer subtypes, stemness, and lineage differentiation. Frontiers in Endocrinology (Lausanne), 6, 59.Google Scholar
  5. 5.
    Coskun, U., Gunel, N., Sancak, B., Gunel, U., Onuk, E., Bayram, O., et al. (2003). Significance of serum vascular endothelial growth factor, insulin-like growth factor-I levels and nitric oxide activity in breast cancer patients. Breast, 12, 104–110.CrossRefGoogle Scholar
  6. 6.
    Reinmuth, N., Fan, F., Liu, W., Parikh, A. A., Stoeltzing, O., Jung, Y. D., et al. (2002). Impact of insulin-like growth factor receptor-I function on angiogenesis, growth, and metastasis of colon cancer. Laboratory Investigation, 82, 1377–1389.CrossRefGoogle Scholar
  7. 7.
    Stoeltzing, O., Liu, W., Reinmuth, N., Fan, F., Parikh, A. A., Bucana, C. D., et al. (2003). Regulation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and angiogenesis by an insulin-like growth factor-I receptor autocrine loop in human pancreatic cancer. American Journal of Pathology, 163, 1001–1011.CrossRefGoogle Scholar
  8. 8.
    Bayrami, V., Keyhanfar, M., Mohabatkar, H., Mahdavi, M., & Moreau, V. (2016). In silico prediction of B cell epitopes of the extracellular domain of insulin-like growth factor-1 receptor. Molecular Biology Research Communications, 5(4), 201–214.Google Scholar
  9. 9.
    Mahdavi, M., Moreau, V., & Kheirollahi, M. (2017). Identification of B and T cell epitope based peptide vaccine from IGF-1 receptor in breast cancer. Journal of Molecular Graphics and Modelling, 75, 316–321.CrossRefGoogle Scholar
  10. 10.
    Dougan, M., & Dranoff, G. (2009). Immune therapy for cancer. Annual Review of Immunology, 27, 83–117.CrossRefGoogle Scholar
  11. 11.
    Fuenmayora, J., Gòdiaa, F., & Cervera, L. (2017). Production of virus-like particles for vaccines. New Biotechnology, 39(Pt B), 174–180.  https://doi.org/10.1016/j.nbt.2017.07.010.CrossRefGoogle Scholar
  12. 12.
    Huang, X., Wang, X., Zhang, J., Xia, N., & Zhao, Q. (2017). Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines, 2, 3.  https://doi.org/10.1038/s41541-017-0006-8.CrossRefGoogle Scholar
  13. 13.
    Roldão, A., Mellado, M. C., Castilho, L. R., Carrondo, M. J., & Alves, P. M. (2010). Virus-like particles in vaccine development. Expert Review of Vaccines, 9(10), 1149–1176.  https://doi.org/10.1586/erv.10.115.CrossRefGoogle Scholar
  14. 14.
    Bachmann, M. F., Rohrer, U. H., Kündig, T. M., Bürki, K., Hengartner, H., & Zinkernagel, R. M. (1993). The influence of antigen organization on B cell responsiveness. Science, 262, 1448–1451.CrossRefGoogle Scholar
  15. 15.
    Ruedl, C., Schwarz, K., Jegerlehner, A., Storni, T., Manolova, V., & Bachmann, M. F. (2005). Virus-like particles as carriers for T-cell epitopes: Limited inhibition of T-cell priming by carrier-specific antibodies. Journal of Virology, 79, 717–724.CrossRefGoogle Scholar
  16. 16.
    Keller, S. A., Schwarz, K., Manolova, V., von Allmen, C. E., Kinzler, M. G., Bauer, M., et al. (2010). Innate signaling regulates cross-priming at the level of DC licensing and not antigen presentation. European Journal of Immunology, 40, 103–112.CrossRefGoogle Scholar
  17. 17.
    Grgacic, E. V., & Anderson, D. A. (2006). Virus-like particles: Passport to immune recognition. Methods, 40, 60–65.CrossRefGoogle Scholar
  18. 18.
    Kushnir, N., Streatfield, S. J., & Yusibov, V. (2012). Virus-like particles as a highly efficient vaccine platform: Diversity of targets and production systems and advances in clinical development. Vaccine, 31, 58–83.CrossRefGoogle Scholar
  19. 19.
    Bachmann, M. F., & Jennings, J. T. (2010). Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nature Reviews Immunology, 10, 787–796.CrossRefGoogle Scholar
  20. 20.
    Chen, Q., & Lai, H. (2013). Plant-derived virus-like particles as vaccines. Human Vaccines & Immunotherapeutics, 9, 26–49.CrossRefGoogle Scholar
  21. 21.
    Sánchez-Rodríguez, S. P., Münch-Anguiano, L., Echeverría, O., Vázquez-Nin, G., Mora-Pale, M., Dordick, J. S., et al. (2012). Human parvovirus B19 virus-like particles: In vitro assembly and stability. Biochimie, 94, 870–878.CrossRefGoogle Scholar
  22. 22.
    Bustos-Jaimes, I., Soto-Román, R. A., Gutiérrez-Landa, I. A., Valadez-García, J., & Segovia-Trinidad, C. L. (2017). Construction of protein-functionalized virus-like particles of parvovirus B19. Journal of Biotechnology, 263, 55–63.CrossRefGoogle Scholar
  23. 23.
    Bailey-Downs, L. C., Thorpe, J. E., Disch, B. C., Bastian, A., Hauser, P. J., Farasyn, T., et al. (2014). Development and characterization of a preclinical model of breast cancer lung micrometastatic to macrometastatic progression. PLoS ONE, 9(5), e98624.  https://doi.org/10.1371/journal.pone.0098624.CrossRefGoogle Scholar
  24. 24.
    Sánchez-Rodríguez, S. P., Morán-García, A. C., Bolonduro, O., Dordick, J. S., & Bustos-Jaimes, I. (2016). Enhanced assembly and colloidal stabilization of primate erythroparvovirus 1 virus-like particles for improved surface engineering. Acta Biomaterialia, 35, 206–214.CrossRefGoogle Scholar
  25. 25.
    Morán-García, A. C., Rivera-Toledo, E., Echeverría, O., Vázquez-Nin, G., Gómez, B., & Bustos-Jaimes, I. (2016). Peptide presentation on primate erythroparvovirus 1 virus-like particles: In vitro assembly, stability and immunological properties. Virus Research, 224, 12–18.CrossRefGoogle Scholar
  26. 26.
    Koppel, D. E. (1972). Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants. The Journal of Chemical Physics, 57, 4814–4820.CrossRefGoogle Scholar
  27. 27.
    Baserga, R., Peruzzi, F., & Reiss, K. (2003). The IGF-1 receptor in cancer biology. International Journal of Cancer, 107, 873–877.CrossRefGoogle Scholar
  28. 28.
    Cox, O. T., O’Shea, S., Tresse, E., Bustamante-Garrido, M., Kiran-Deevi, R., & O’Connor, R. (2015). IGF-1 Receptor and adhesion signaling: An important axis in determining cancer cell phenotype and therapy resistance. Frontiers in Endocrinology (Lausanne), 6, 106.Google Scholar
  29. 29.
    Murta, E. F., de Andrade, J. M., Falcão, R. P., & Bighetti, S. (2000). Lymphocyte subpopulations in patients with advanced breast cancer submitted to neoadjuvant chemotherapy. Tumori, 86, 403–407.CrossRefGoogle Scholar
  30. 30.
    Farace, F., Angevin, E., Vanderplancke, J., Escudier, B., & Triebel, F. (1994). The decreased expression of CD3 zeta chains in cancer patients is not reversed by IL-2 administration. International Journal of Cancer, 59, 752–755.CrossRefGoogle Scholar
  31. 31.
    Yu, B., & Zhang, W. (2011). Down-regulation of CD3zeta is a breast cancer biomarker associated with immune suppression. Cell Biology International, 35, 165–169.CrossRefGoogle Scholar
  32. 32.
    Avraamides, C. J., Garmy-Susini, B., & Varner, J. A. (2008). Integrins in angiogenesis and lymphangiogenesis. Nature Reviews Cancer, 8, 604–617.CrossRefGoogle Scholar
  33. 33.
    Weigel-Kelley, K. A., Yoder, M. C., & Srivastava, A. (2003). Alpha5beta1 integrin as a cellular coreceptor for human parvovirus B19: requirement of functional activation of beta1 integrin for viral entry. Blood, 102, 3927–3933.CrossRefGoogle Scholar
  34. 34.
    Bader, B. L., Rayburn, H., Crowley, D., & Hynes, R. O. (1998). Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell, 95, 507–519.CrossRefGoogle Scholar
  35. 35.
    Carlson, T. R., Hu, H., Braren, R., Kim, Y. H., & Wang, R. A. (2008). Cell-autonomous requirement for beta1 integrin in endothelial cell adhesion, migration and survival during angiogenesis in mice. Development, 135, 2193–2202.CrossRefGoogle Scholar
  36. 36.
    Li, L., Welser-Alves, J., van der Flier, A., Boroujerdi, A., Hynes, R. O., & Milner, R. (2012). An angiogenic role for the alpha5beta1 integrin in promoting endothelial cell proliferation during cerebral hypoxia. Experimental Neurology, 237, 46–54.CrossRefGoogle Scholar
  37. 37.
    Schaffner, F., Ray, A. M., & Dontenwill, M. (2013). Integrin α5β1, the fibronectin receptor, as a pertinent therapeutic target in solid tumours. Cancers (Basel), 5, 27–47.CrossRefGoogle Scholar
  38. 38.
    Goodman, S. L., & Picard, M. (2012). Integrins as therapeutic targets. Trends in Pharmacological Sciences, 33, 405–412.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jorge Alberto Salazar-González
    • 1
    Email author
  • Alail Antonio Ruiz-Cruz
    • 1
  • Ismael Bustos-Jaimes
    • 2
  • Leticia Moreno-Fierros
    • 1
    Email author
  1. 1.Laboratorio de Inmunidad en Mucosas, Unidad de Biomedicina, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantlaMexico
  2. 2.Departamento de Bioquímica, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations