Skip to main content
Log in

Acquirement of CRY8DB Transgenic Tall Fescue (Festuca arundinacea Schreb.) by Agrobacterium tumefaciens to Develop Resistance Against Pentodon idiota Herbest.

  • Original paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Tall fescue plants are widely exposed to white grubs. Regarding the rate of damage caused by the white grubs to tall fescue and difficulty of its ecological and economical control, production of resistant cultivars is a priority. In this experiment, for the first time, we report production of transgenic lines resistant to white grub using CR8DB gene. For this, mature seeds were placed on MS basal medium with 0–15 mg L−1 2,4-D for callogenesis and 0–1.75 mg L−1 BA for regeneration. ‘Asterix’ (54.11%) in 7.5 and ‘Talladega’ (52.53%) in 10 mg L−1 2,4-D showed maximum callogenesis. Regeneration percentage was higher in 0.5 mg L−1 BA. Agrobacterium tumefaciens strain LBA4404 harbouring binary vector pCAMBIA 1301 with CRY8DB gene, which contains HPTII gene and uidA and various types MS media were used for transformation of calli. The highest percentage of gus enzyme activity and hygromycin resistance in calli was related to the modified medium type 11. The PCR and RT-PCR analysis was done to confirm the presence and expression of the target gene in transgenic 5 lines in ‘Asterix’ and 3 lines in ‘Talladega’. According to bioassay, larvae mortality of 91.66% was observed in transgenic plants, whereas it was 15.52% in control plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lilly, P. J., Jenkins, J. C., & Carroll, M. J. (2015). Management alters C allocation in turfgrass lawns. Landscape and Urban Planning Journal, 134, 119–126. https://doi.org/10.1016/j.landurbplan.2014.10.011.

    Article  Google Scholar 

  2. Saeedi Pooya, E., Tehranifar, A., & Shoor, M. (2013). The use of native turf mixtures to approach sustainable lawn in urban landscapes. Urban Forestry and Urban Greening, 12, 532–536.

    Article  Google Scholar 

  3. Yu, J., Chen, L., Xu, M., et al. (2012). Effects of elevated CO2 on physiological responses of tall fescue to elevated temperature, drought stress, and the combined stresses. Crop Science, 52, 1848–1858. https://doi.org/10.2135/cropsci2012.01.0030.

    Article  CAS  Google Scholar 

  4. Silva, F. A. B., Costa, C. M. Q., Moura, R. C., et al. (2010). Study of the dung beetle (Coleoptera: Scarabaeidae) community at two sites: Atlantic forest and clear-cut, Pernambuco, Brazil. Environmental Entomology, 39, 359–367. https://doi.org/10.1603/EN09180.

    Article  CAS  PubMed  Google Scholar 

  5. Barden, S. A. (2011). Red imported fire ant influences on white grub populations and soil foraging characteristics in managed turfgrass. MS thesis, Auburn University, Auburn, Alabama.

  6. Chen, R. Z., Klein, M. G., Sheng, C. F., et al. (2013). Male and female Popillia quadriguttata (Fabricius) and Protaetia brevitarsis (Lewis) (Coleoptera: Scarabaeidae) response to Japanese beetle floral and pheromone lures. Journal of Asia-Pacific Entomology, 16, 479–484. https://doi.org/10.1016/j.aspen.2013.08.001.

    Article  CAS  Google Scholar 

  7. Mir Saeedi, H. (2011). Study of some biological traits and seasonal changes of Pentadon idiota Herbest in Shiraz city and the effect of Entonema® and Larvanema® on its larvae in greenhouse conditions. MS thesis, Shiraz University, Shiraz. Iran.

  8. Zhang, W. J. (2018). Global pesticide use: Profile, trend, cost/benefit and more. International Academy of Ecology and Environmental Sciences, 8, 1–27.

    Google Scholar 

  9. Arthurs, S. P., & Bruck, D. J. (2017). Microbial control of nursery ornamental and landscape plant pests. Microbial Control of Insect and Mite Pests, 24, 355–366. https://doi.org/10.1016/B978-0-12-803527-6.00024-X.

    Article  Google Scholar 

  10. Liesch, P. J., & Williamson, R. C. (2010). Evaluation of chemical controls and entomopathogenic nematodes for control of Phyllophaga white grubs in a Fraser fir production field. Journal of Economic Entomology, 103, 1979–1987. https://doi.org/10.1603/EC10176.

    Article  CAS  PubMed  Google Scholar 

  11. Redmond, C. T., & Potter, D. A. (2010). Incidence of turf-damaging white grubs (Coleoptera: Scarabaeidae) and associated pathogens and parasitoids on Kentucky golf courses. Environmental Entomology, 39, 38–47. https://doi.org/10.1603/EN10172.

    Article  Google Scholar 

  12. Liang, L., Tang, S., & Cheke, R. A. (2016). Pure Bt-crop and mixed seed sowing strategies for optimal economic profit in the face of pest resistance to pesticides and Bt-corn. Applied Mathematics and Computation Journal, 283, 6–21. https://doi.org/10.1016/j.amc.2016.02.023.

    Article  Google Scholar 

  13. Sanahuja, G., Banakar, R., Twyman, R. M., et al. (2011). Bacillus thuringiensis: A century of research, development and commercial applications. Plant Biotechnology Journal, 9, 283–300. https://doi.org/10.1111/j.1467-7652.2011.00595.x.

    Article  CAS  PubMed  Google Scholar 

  14. Sampoux, J. P., Baudouin, P., Bayle, B., et al. (2012). Breeding perennial ryegrass (Lolium perenne L.) for turf usage: an assess-ment of genetic improvements in cultivars released in Europe, 1974–2004. Grass and Forage Science, 68, 33–48. https://doi.org/10.1111/j.1365-2494.2012.00896.x.

    Article  Google Scholar 

  15. Humphreys, M., Feuerstein, U., Vandewalle, M., et al. (2010). Ryegrass. In B. Boller, U. K. Posselt, & F. Veronesi (Eds.), Fodder crops and amenity grasses (pp. 211–260). New York: Springer.

    Chapter  Google Scholar 

  16. Wu, Y. D. (2014). Detection and mechanisms of resistance evolved in insects to cry toxins from Bacillus thuringiensis. Advances in Insect Physiology, 47, 297–342. https://doi.org/10.1016/B978-0-12-800197-4.00006-3.

    Article  Google Scholar 

  17. Yamaguchi, T., Sahara, K., Bando, H., et al. (2008). Discovery of a novel Bacillus thuringiensis cry8D protein and the unique toxicity of the cry8D-class proteins against scarab beetles. Journal of Invertebrate Pathology, 99, 257–262. https://doi.org/10.1016/j.jip.2008.05.009.

    Article  CAS  PubMed  Google Scholar 

  18. Adang, M., Crickmore, N., & Jurat-Fuentes, J. L. (2014). Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. In T. S. Dhadialla & S. Gill (Eds.), Advances in insect physiology (pp. 39–87). Oxford: Academic Press.

    Google Scholar 

  19. Barfoot, P., & Brookes, G. (2014). Key global environmental impacts of genetically modified (GM) crop use 1996–2012. GM Crops and Food, 5, 149–160. https://doi.org/10.4161/gmcr.28449.

    Article  PubMed  Google Scholar 

  20. Salehi, H., & Kosh-Khui, M. (2005). Effects of genotype and plant growth regulator on callus induction and plant regeneration in four important turfgrass genera: A comparative study. Vitro Cellular and Developmental Biology Plant, 41, 157–161. https://doi.org/10.1079/IVP2004614.

    Article  CAS  Google Scholar 

  21. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  22. Jefferson, R. A. (1987). Assaying chimeric gene in plants: The GUS gene fusion system. Plant Molecular Biology Reporter, 5, 387–405. https://doi.org/10.1007/BF02667740.

    Article  CAS  Google Scholar 

  23. Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.

    Google Scholar 

  24. Perrot-Rechenmann, C. (2010). Cellular responses to auxin: Division versus expansion. Cold Spring Harbor Perspectives in Biology, 2, 1–15. https://doi.org/10.1101/cshperspect.a001446.

    Article  CAS  Google Scholar 

  25. Salehi, H., Salehi, M. R., & Sticklen, M. B. (2008). Tissue culture and genetic transformation of some turfgrass genera. Floriculture, Ornamental and Plant Biotechnology, 2, 25–31.

    Google Scholar 

  26. Krans, J. V., Henning, V. T., & Torres, K. C. (1982). Callus induction, maintenance and plantlet regeneration in creeping bentgrass. Crop Science, 22, 1193–1197. https://doi.org/10.2135/cropsci1982.0011183X002200060025x.

    Article  Google Scholar 

  27. Bai, Y. (2001). Tissue culture and genetic transformation of tall fescue. PhD thesis, North Carolina State University, NC, USA.

  28. Lee, S. H., Lee, D. G., & Lee, B. H. (2004). Effects of medium supplements on seed-derived callus culture and regeneration of orchardgrass. Korean Journal of Crop Science, 49, 232–236. https://doi.org/10.5187/JAST.2004.46.2.243.

    Article  Google Scholar 

  29. Danilova, S. A., & Dolgikh, Y. I. (2005). Optimization of Agrobacterial (Agrobacterium tumefaciens) transformation of maize embryogenic callus. Russian Journal of Plant Physiology, 4, 535–541. https://doi.org/10.1007/s11183-005-0079-5.

    Article  CAS  Google Scholar 

  30. Salehi, H., Seddighi, Z., Kravchenko, A. N., et al. (2005). Expression of the CRY1AC in ،Arizona common, common Bermudagrass via Agrobacterium mediated transformation and control of black cutworm. Journal of the American Society for Horticultural Science, 130, 619–623. https://doi.org/10.21273/JASHS.130.4.619.

    Article  CAS  Google Scholar 

  31. Ogaki, M., Furuichi, Y., Kuroda, K., et al. (2008). Importance of co-cultivation medium pH for successful Agrobacterium-mediated transformation of Lilium × formolongi. Plant Cell Reports, 27, 699–705. https://doi.org/10.1007/s00299-007-0481-x.

    Article  CAS  PubMed  Google Scholar 

  32. Azadi, P., Chin, D. P., Kuroda, K., et al. (2010). Macro elements in inoculation and co-cultivation medium strongly affect the efficiency of Agrobacterium-mediated transformation in Lilium. Plant Cell Tissue Organ Culture, 101, 201–209. https://doi.org/10.1007/s11240-010-9677-9.

    Article  CAS  Google Scholar 

  33. Montoro, P., Teinseree, N., Rattana, W., et al. (2000). Effect of exogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis (rubber tree) friable calli. Plant Cell Reports, 19, 851–855. https://doi.org/10.1007/s002990000208.

    Article  CAS  PubMed  Google Scholar 

  34. Hoshi, Y., Kondo, M., Mori, S., et al. (2004). Production of transgenic lily plants by Agrobacterium-mediated transformation. Plant Cell Reports, 22, 359–364. https://doi.org/10.1007/s00299-003-0700-z.

    Article  CAS  PubMed  Google Scholar 

  35. Dupre, P., Lacoux, J., Neutelings, G., et al. (2000). Genetic transformation of Ginkgo biloba by Agrobacterium tumefaciens. Physiologia Plantarum, 108, 413–419. https://doi.org/10.1034/j.1399-3054.2000.t01-1-100411.x.

    Article  CAS  Google Scholar 

  36. Ankenbauer, R. G., & Nester, E. W. (1990). Sugar-mediated induction of Agrobacterium tumefaciens virulence genes: structural specificity and activities of monosaccharides. Journal of Bacteriology, 172, 6442–6446. https://doi.org/10.1128/jb.172.11.6442-6446.1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shimoda, N., Toyoda-Yamamoto, A., Nagamine, J., et al. (1990). Control of expression of Agrobacterium VIR genes by synergistic actions of phenolic signal molecules and monosaccharides. Proceedings of the National Academy of Sciences USA, 87, 6684–6688. https://doi.org/10.1073/pnas.87.17.6684.

    Article  CAS  Google Scholar 

  38. Ahn, J. H., & Lee, J. S. (2003). Sugar acts as a regulatory signal on the wound-inducible expression of SbHRGP3:GUS in transgenic plants. Plant Cell Reports, 22, 286–293. https://doi.org/10.1007/s00299-003-0685-7.

    Article  CAS  PubMed  Google Scholar 

  39. Wise, A. A., Voinov, L., & Binns, A. N. (2005). Intersubunit complementation of sugar signal transduction in VIRA heterodimers and posttranslational regulation of VIRA activity in Agrobacterium tumefaciens. Journal of Bacteriology, 187, 213–223. https://doi.org/10.1128/JB.187.1.213-223.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ahmad, A., Maqbool, S. B., Riazuddin, S., et al. (2002). Expression of synthetic CRY1AB and CRY1AC genes in Basmati rice (Oryza sativa L.) variety 370 via Agrobacterium-mediated transformation for the control of the european corn borer (Ostrinia nubilalis). Vitro Cellular and Developmental Biology Plant, 38, 213–220. https://doi.org/10.1079/IVPIVP2001277.

    Article  CAS  Google Scholar 

  41. Luciani, G., Altpeter, F., Yactayo-Chang, J., et al. (2007). Expression of CRY1FA in Bahiagrass enhances resistance to fall armyworm. Crop Science, 47, 2430–2436. https://doi.org/10.2135/cropsci2007.04.0195.

    Article  CAS  Google Scholar 

  42. Shu, C. L., Yan, G., Wang, R. Y., et al. (2009). Characterization of a novel CRY8 gene specific to Melolonthidae pests: Holotrichia oblita and Holotrichia parallela. Applied Microbiology and Biotechnology, 84, 701–707. https://doi.org/10.1007/s00253-009-1971-2.

    Article  CAS  PubMed  Google Scholar 

  43. Shu, C. L., Liu, R. M., Wang, R. Y., et al. (2007). Improving toxicity of Bacillus thuringiensis strain contains the CRY8CA gene specific to metallic green beetle (Anomala corpulenta Motschulsky.) larvae. Current Microbiology, 55, 492–496.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Salehi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, H.R., Salehi, H. & Alichi, M. Acquirement of CRY8DB Transgenic Tall Fescue (Festuca arundinacea Schreb.) by Agrobacterium tumefaciens to Develop Resistance Against Pentodon idiota Herbest.. Mol Biotechnol 61, 528–540 (2019). https://doi.org/10.1007/s12033-019-00183-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00183-5

Keywords

Navigation