Skip to main content
Log in

High Conversion of d-Fructose into d-Allulose by Enzymes Coupling with an ATP Regeneration System

  • Original paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

d-Allulose is a rare monosaccharide that exists in extremely small quantities in nature, and it is also hard to prepare at a large scale via chemical or enzyme synthetic route due to low conversion and downstream separation complexity. Using d-psicose epimerase and l-rhamnulose kinase, a method enabling high conversion of d-allulose from d-fructose without the need for a tedious isomer separation step was established recently. However, this method requires expensive ATP to facilitate the reaction. In the present study, an ATP regenerate system was developed coupling with polyphosphate kinase. In our optimized reaction with purified enzymes, the conversion rate of 99% d-fructose was achieved at the concentrations of 2 mM ATP, 5 mM polyphosphate, 20 mM d-fructose, and 20 mM Mg2+ when incubated at 50 °C and at pH 7.5. ATP usage can be reduced to 10% of the theoretical amount compared to that without the ATP regeneration system. A fed-batch mode was also studied to minimize the inhibitory effect of polyphosphate. The biosynthetic system reported here offers a potential and promising platform for the conversion of d-fructose into d-allulose at reduced ATP cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang, W., Yu, S., Zhang, T., Jiang, B., & Mu, W. (2016). Recent advances in d-allulose: Physiological functionalities, applications, and biological production. Trends in Food Science & Technology, 54, 127–137.

    Article  CAS  Google Scholar 

  2. Park, C. S., Shin, K. C., & Oh, D. K. (2016). Production of d-psicose from d-fructose by whole recombinant cells with high-level expression of d-psicose 3-epimerase from Agrobacterium tumefaciens. Journal of Bioscience and Bioengineering, 121, 186–190.

    Article  CAS  PubMed  Google Scholar 

  3. Wenli, Z., Dan, F., Qingchao, X., Leon, Z., Bo, J., & Wanmeng, M. (2013). Characterization of a novel metal-dependent d-psicose 3-epimerase from Clostridium scindens 35704. PLoS ONE, 8, e62987.

    Article  CAS  Google Scholar 

  4. Zeng, Y., Zhang, X., Guan, Y., & Sun, Y. (2011). Characteristics and antioxidant activity of Maillard reaction products from psicose-lysine and fructose-lysine model systems. Journal of Food Science, 76, C398–C403.

    Article  CAS  PubMed  Google Scholar 

  5. Li, C., Lin, J., Guo, Q., Zhang, C., Du, K., Lin, H., et al. (2018). D-psicose 3-epimerase secretory overexpression, immobilization, and d-psicose biotransformation, separation and crystallization. Journal of Chemical Technology & Biotechnology, 93(2), 350–357.

    Article  CAS  Google Scholar 

  6. Kim, H. J., Hyun, E. K., Kim, Y. S., Lee, Y. J., & Oh, D. K. (2006). Characterization of an Agrobacterium tumefaciens d-psicose 3-epimerase that converts d-fructose to d-psicose. Applied and Environment Microbiology, 72(2), 981–985.

    Article  CAS  Google Scholar 

  7. Yang, P., Zhu, X., Zheng, Z., Mu, D., Jiang, S., Luo, S., et al. (2018). Cell regeneration and cyclic catalysis of engineered Kluyveromyces marxianus of a d-psicose-3-epimerase gene from Agrobacterium tumefaciens for d-allulose production. World Journal of Microbiology & Biotechnology, 34, 65.

    Article  CAS  Google Scholar 

  8. Zhang, L., Mu, W., Jiang, B., & Zhang, T. (2009). Characterization of d-tagatose-3-epimerase from Rhodobacter sphaeroides that converts d-fructose into d-psicose. Biotechnology Letters, 31, 857–862.

    Article  CAS  PubMed  Google Scholar 

  9. Xing, Q. (2013). Characterization of a metal-dependent d-psicose 3-epimerase from a novel strain, Desmospora sp. 8437. Journal of Agriculture and Food Chemistry, 61, 11468–11476.

    Article  CAS  Google Scholar 

  10. Wen, L., Huang, K., Wei, M., Meisner, J., Liu, Y., & Garner, K. (2015). Facile enzymatic synthesis of ketoses. Angewandte Chemie, 54(43), 12654–12658.

    Article  CAS  PubMed  Google Scholar 

  11. Rodionova, I. A., Yang, C., Li, X., Kurnasov, O. V., Best, A. A., Osterman, A. L., et al. (2012). Diversity and versatility of the Thermotoga maritima sugar kinome. Journal of Bacteriology, 194, 5552–5563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wen, L., Huang, K., Liu, Y., & Wang, P. G. (2016). Facile enzymatic synthesis of phosphorylated ketopentoses. ACS Catalysis, 6, 1649–1654.

    Article  CAS  Google Scholar 

  13. Kuniyoshi, T., & Mikio, H. (1963). Method for the preparation of adenosine 5’-triphosphate: U.S. Patent No. 3,079,379. Washington, DC: U.S. Patent and Trademark Office.

  14. Hara, K. Y., & Kondo, A. (2015). ATP regulation in bioproduction. Microbial Cell Factories, 14, 198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, H. Y., Magotra, M., Wong, T. Y., Chakraborty, C., & Liu, J. K. (2012). ATP-dependent fructose uptake system in Deinococcus radiodurans. Applied Microbiology and Biotechnology, 93, 1241–1248.

    Article  CAS  PubMed  Google Scholar 

  16. Iwamoto, S., Motomura, K., Shinoda, Y., Urata, M., Kato, J., Takiguchi, N., et al. (2007). Use of an Escherichia coli recombinant producing thermostable polyphosphate kinase as an ATP regenerator to produce fructose 1,6-diphosphate. Applied and Environment Microbiology, 73, 5676.

    Article  CAS  Google Scholar 

  17. An, C., Zhao, L., Wei, Z., & Zhou, X. (2017). Chemoenzymatic synthesis of 3’-phosphoadenosine-5’-phosphosulfate coupling with an ATP regeneration system. Applied Microbiology and Biotechnology, 101, 1–10.

    Article  CAS  Google Scholar 

  18. Andexer, J. N., & Richter, M. (2015). Emerging enzymes for ATP regeneration in biocatalytic processes. Chembiochem A European Journal of Chemical Biology, 16, 380–386.

    Article  CAS  PubMed  Google Scholar 

  19. Xing, Z., Hui, W., Bing, H., Li, Z., & Ye, Q. (2017). One-pot synthesis of glutathione by a two-enzyme cascade using a thermophilic ATP regeneration system. Journal of Biotechnology, 241, 163–169.

    Article  CAS  Google Scholar 

  20. Kameda, A., Shiba, T., Kawazoe, Y., Satoh, Y., Ihara, Y., Munekata, M., et al. (2001). A novel ATP regeneration system using polyphosphate-AMP phosphotransferase and polyphosphate kinase. Journal of Bioscience and Bioengineering, 91, 557–563.

    Article  CAS  PubMed  Google Scholar 

  21. Murata, K., Uchida, T., Kato, J., & Chibata, I. (1988). Polyphosphate kinase: Distribution, some properties and its application as an ATP regeneration system. Agricultural and Biological Chemistry, 52, 1471–1477.

    CAS  Google Scholar 

  22. Kuroda, A., & Kornberg, A. (1997). Polyphosphate kinase as a nucleoside diphosphate kinase in Escherichia coli and Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences USA, 94, 439–442.

    Article  CAS  Google Scholar 

  23. Noguchi, T., & Shiba, T. (1998). Use of Escherichia coli polyphosphate kinase for oligosaccharide synthesis. Bioscience, Biotechnology, and Biochemistry, 62, 1594–1596.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, S., Li, Y., & Zhu, J. (2016). Enzymatic production of l-theanine by γ-glutamylmethylamide synthetase coupling with an ATP regeneration system based on polyphosphate kinase. Process Biochemistry, 51, 1458–1463.

    Article  CAS  Google Scholar 

  25. Sato, M., Masuda, Y., Kirimura, K., & Kino, K. (2007). Thermostable ATP regeneration system using polyphosphate kinase from Thermosynechococcus elongatus BP-1 for D-amino acid dipeptide synthesis. Journal of Bioscience and Bioengineering, 103, 179–184.

    Article  CAS  PubMed  Google Scholar 

  26. Rossolini, G. M., Thaller, M. C., Pezzi, R., & Satta, G. (1994). Identification of an Escherichia coli periplasmic acid phosphatase containing of a 27 kDa-polypeptide component. FEMS Microbiology Letters, 118, 167–173.

    Article  CAS  PubMed  Google Scholar 

  27. Grueninger, D., & Schulz, G. E. (2006). Structure and reaction mechanism of L-rhamnulose kinase from Escherichia coli. Journal of Molecular Biology, 359, 787–797.

    Article  CAS  PubMed  Google Scholar 

  28. Akiyama, M., Crooke, E., & Kornberg, A. (1992). The polyphosphate kinase gene of Escherichia coli. Isolation and sequence of the ppk gene and membrane location of the protein. Journal of Biological Chemistry, 267, 22556–22561.

    CAS  PubMed  Google Scholar 

  29. Liu, Z., Zhang, J., Chen, X., & Wang, P. G. (2015). Combined biosynthetic pathway for de novo production of UDP-galactose: Catalysis with multiple enzymes immobilized on agarose beads. Chembiochem: A European Journal of Chemical Biology, 3, 348–355.

    Article  Google Scholar 

  30. Patel, S. N., Sharma, M., Lata, K., Singh, U., Kumar, V., Sangwa, R. S., et al. (2016). Improved operational stability of d-psicose 3-epimerase by a novel protein engineering strategy, and d-psicose production from fruit and vegetable residues. Bioresource Technology, 216, 121–127.

    Article  CAS  PubMed  Google Scholar 

  31. Choi, J. G., Ju, Y. H., Yeom, S. J., & Oh, D. K. (2011). Improvement in the thermostability of d-psicose 3-epimerase from Agrobacterium tumefaciens by random and site-directed mutagenesis. Applied and Environment Microbiology, 77, 7316–7320.

    Article  CAS  Google Scholar 

  32. Li, C., Zhang, C., Lin, J., Gao, L., Lin, H., & Lin, J. (2018). Enzymatic fructose removal from D-psicose bioproduction model solution and the system modeling and simulation. Journal of Chemical Technology & Biotechnology, 93, 1249–1260.

    Article  CAS  Google Scholar 

  33. Shimane, M., Sugai, Y., Kainuma, R., Natsume, M., & Kawaide, H. (2012). Mevalonate-dependent enzymatic synthesis of amorphadiene driven by an ATP-regeneration system using polyphosphate kinase. Bioscience, biotechnology, and biochemistry, 76, 1558–1560.

    Article  CAS  PubMed  Google Scholar 

  34. Shiba, T., Tsutsumi, K., Ishige, K., & Noguchi, T. (2000). Inorganic polyphosphate and polyphosphate kinase: Their novel biological functions and applications (review). Biochemistry Biokhimiia, 65, 315–323.

    CAS  PubMed  Google Scholar 

  35. Nakamichi, Y., Yoshioka, A., Kawai, S., & Murata, K. (2013). Conferring the ability to utilize inorganic polyphosphate on ATP-specific NAD kinase. Scientific Reports, 3, 274–274.

    Article  Google Scholar 

  36. Restiawaty, E., Iwasa, Y., Maya, S., Honda, K., Omasa, T., Hirota, R., et al. (2011). Feasibility of thermophilic adenosine triphosphate-regeneration system using Thermus thermophilus polyphosphate kinase. Process Biochemistry, 46, 1747–1752.

    Article  CAS  Google Scholar 

  37. Shaeri, J., Wright, I., Rathbone, E. B., Wohlgemuth, R., & Woodley, J. M. (2008). Characterization of enzymatic D-xylulose 5-phosphate synthesis. Biotechnology and Bioengineering, 101, 761–767.

    Article  CAS  PubMed  Google Scholar 

  38. Cao, H., Li, C., Zhao, J., Wang, F., Tan, T., & Liu, L. (2018). Enzymatic production of glutathione coupling with an ATP regeneration system based on polyphosphate kinase. Applied Biochemistry and Biotechnology, 185, 385–395.

    Article  CAS  PubMed  Google Scholar 

  39. Lindner, S. N., Niederholtmeyer, H., Schmitz, K., Schoberth, S. M., & Wendisch, V. F. (2010). Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: Biochemical properties and impact of ppK overexpression on lysine production. Applied Microbiology and Biotechnology, 87, 583–593.

    Article  CAS  PubMed  Google Scholar 

  40. Meng, Q., Zhang, Y., Ju, X., Ma, C., Ma, P. D., Chen, J., et al. (2016). Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis. Journal of Biotechnology, 226, 8–13.

    Article  CAS  PubMed  Google Scholar 

  41. Pei, J., Chen, A., Zhao, L., Cao, F., Ding, G., & Xiao, W. (2017). One-pot synthesis of hyperoside by a three-enzyme cascade using a UDP-galactose regeneration system. Journal of Agriculture and Food Chemistry, 65, 6042–6048.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The above study was financially supported by the Ministry of Education of Singapore (Grant No. 17GAP002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youcai Liu or Xingding Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Q., Niu, J., Liu, H. et al. High Conversion of d-Fructose into d-Allulose by Enzymes Coupling with an ATP Regeneration System. Mol Biotechnol 61, 432–441 (2019). https://doi.org/10.1007/s12033-019-00174-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00174-6

Keywords

Navigation