Skip to main content
Log in

A High-Throughput Platform for the Generation of Synthetic Ab Clones by Single-Strand Site-Directed Mutagenesis

  • Original paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Current developments in meta-data analysis and predictive computational models offer alternative routes for the identification of antibodies. In silico-based technologies and NGS data analysis from Ab phage-display selections offer expanded selections of Ab candidates. Accordingly, the identified de novo Abs with predicted selectivity for a target antigen must undergo rapid gene synthesis for downstream Ab characterizations. Here we describe a high-throughput strategy for the generation of synthetic Ab clones for expression as Fab proteins in Escherichia coli. Our approach utilizes simultaneous single-stranded site-directed mutagenesis of diversified Ab regions of a phagemid template with engineered complementary determining regions that contain multiple stop codon and restriction enzyme sites. Subsequently, we perform rapid screening of Ab DNA clones for correct gene assemblies by high-throughput Ab-phage protein expression screens. Identified sequences are corroborated by Sanger DNA sequencing analysis. In summary, our work describes a rapid and cost-effective platform for the high-throughput synthesis of synthetic Ab genes as Fab proteins for implementation into downstream protein validation pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Abs:

Antibodies

CDRs:

Complementary determining regions

NGS:

Next-generation sequencing

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

PBS:

Phosphate-buffered saline

ssDNA:

Single-stranded DNA

TMAC:

Tetramethyl-ammonium-chloride

DTT:

Dithiothreitol

BSA:

Bovine serum albumin

HRP:

Horseradish peroxidase

References

  1. Feldhaus, M. J., & Siegel, R. W. (2004). Yeast display of antibody fragments: A discovery and characterization platform. Journal of Immunological Methods, 290(1–2), 69–80. https://doi.org/10.1016/J.JIM.2004.04.009.

    Article  CAS  PubMed  Google Scholar 

  2. Hanes, J., Schaffitzel, C., Knappik, A., & Plückthun, A. (2000). Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nature Biotechnology, 18(12), 1287–1292. https://doi.org/10.1038/82407.

    Article  CAS  PubMed  Google Scholar 

  3. Winter, G., & Milstein, C. (1991). Man-made antibodies. Nature, 349(6307), 293–299. https://doi.org/10.1038/349293a0.

    Article  CAS  PubMed  Google Scholar 

  4. Marks, J. D., Hoogenboom, H. R., Bonnert, T. P., McCafferty, J., Griffiths, A. D., & Winter, G. (1991). By-passing immunization. Journal of Molecular Biology, 222(3), 581–597. https://doi.org/10.1016/0022-2836(91)90498-U.

    Article  CAS  PubMed  Google Scholar 

  5. Goding, J. W. (1980). Antibody production by hybridomas. Journal of Immunological Methods, 39(4), 285–308. https://doi.org/10.1016/0022-1759(80)90230-6.

    Article  CAS  PubMed  Google Scholar 

  6. Tang, D. C., DeVit, M., & Johnston, S. A. (1992). Genetic immunization is a simple method for eliciting an immune response. Nature, 356(6365), 152–154. https://doi.org/10.1038/356152a0.

    Article  CAS  PubMed  Google Scholar 

  7. Köhler, G., & Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256, 495–497. https://doi.org/10.1038/256495a0.

    Article  PubMed  Google Scholar 

  8. Sidhu, S. S. (2005). Phage display in biotechnology and drug discovery. Boca Raton: CRC Press. https://doi.org/10.1201/9780849359125.

    Book  Google Scholar 

  9. Bradbury, A. R. M., & Marks, J. D. (2004). Antibodies from phage antibody libraries. Journal of Immunological Methods, 290(1–2), 29–49. https://doi.org/10.1016/j.jim.2004.04.007.

    Article  CAS  PubMed  Google Scholar 

  10. Yang, G.-H., Yoon, S. O., Jang, M. H., & Hong, H. J. (2007). Affinity maturation of an anti-hepatitis B virus PreS1 humanized antibody by phage display. Journal of microbiology, 45(6), 528–533.

    CAS  PubMed  Google Scholar 

  11. Bradbury, A. R. M., Sidhu, S., Dübel, S., & McCafferty, J. (2011). Beyond natural antibodies: the power of in vitro display technologies. Nature Biotechnology, 29(3), 245–254. https://doi.org/10.1038/nbt.1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miersch, S., & Sidhu, S. S. (2012). Synthetic antibodies: Concepts, potential and practical considerations. Methods, 57(4), 486–498. https://doi.org/10.1016/j.ymeth.2012.06.012.

    Article  CAS  PubMed  Google Scholar 

  13. Benhar, I. (2007). Design of synthetic antibody libraries. Expert Opinion on Biological Therapy, 7(5), 763–779. https://doi.org/10.1517/14712598.7.5.763.

    Article  CAS  PubMed  Google Scholar 

  14. Birtalan, S., Zhang, Y., Fellouse, F. A., Shao, L., Schaefer, G., & Sidhu, S. S. (2008). The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies. Journal of Molecular Biology, 377(5), 1518–1528. https://doi.org/10.1016/j.jmb.2008.01.093.

    Article  CAS  PubMed  Google Scholar 

  15. Glanville, J., Zhai, W., Berka, J., Telman, D., Huerta, G., Mehta, G. R., et al. (2009). Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proceedings of the National Academy of Sciences, 106(48), 20216–20221. https://doi.org/10.1073/pnas.0909775106.

    Article  Google Scholar 

  16. Das, R., Baker, D., Nussinov, R., Wolfson, H. J., Corn, J. E., Strauch, E.-M., et al. (2008). Macromolecular modeling with rosetta. Annual Review of Biochemistry, 77(4), 363–382. https://doi.org/10.1146/annurev.biochem.77.062906.171838.

    Article  CAS  PubMed  Google Scholar 

  17. Fleishman, S. J., Whitehead, T. A., Ekiert, D. C., Dreyfus, C., Corn, J. E., Strauch, E.-M., et al. (2011). Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science, 332(6031), 816–821. https://doi.org/10.1126/science.1202617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, P.-S., Love, J. J., & Mayo, S. L. (2007). A de novo designed protein–protein interface. Protein Science, 16(12), 2770–2774. https://doi.org/10.1110/ps.073125207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kries, H., Blomberg, R., & Hilvert, D. (2013). De novo enzymes by computational design. Current Opinion in Chemical Biology, 17(2), 221–228. https://doi.org/10.1016/j.cbpa.2013.02.012.

    Article  CAS  PubMed  Google Scholar 

  20. Der, B. S., & Kuhlman, B. (2011). From computational design to a protein that binds. Science, 332(6031), 801–802. https://doi.org/10.1126/science.1207082.

    Article  CAS  PubMed  Google Scholar 

  21. Kortemme, T., Joachimiak, L. A., Bullock, A. N., Schuler, A. D., Stoddard, B. L., & Baker, D. (2004). Computational redesign of protein-protein interaction specificity. Nature Structural & Molecular Biology, 11(4), 371–379. https://doi.org/10.1038/nsmb749.

    Article  CAS  Google Scholar 

  22. Lazar, G. A., Dang, W., Karki, S., Vafa, O., Peng, J. S., Hyun, L., et al. (2006). Engineered antibody Fc variants with enhanced effector function. Proceedings of the National academy of Sciences of the United States of America, 103(11), 4005–4010. https://doi.org/10.1073/pnas.0508123103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hwang, I., & Park, S. (2008). Computational design of protein therapeutics. Drug Discovery Today: Technologies, 5(2–3), e43–e48. https://doi.org/10.1016/j.ddtec.2008.11.004.

    Article  PubMed  Google Scholar 

  24. Caravella, J., & Lugovskoy, A. (2010). Design of next-generation protein therapeutics. Current Opinion in Chemical Biology, 14(4), 520–528. https://doi.org/10.1016/j.cbpa.2010.06.175.

    Article  CAS  PubMed  Google Scholar 

  25. Marshall, S. A., Lazar, G. A., Chirino, A. J., & Desjarlais, J. R. (2003). Rational design and engineering of therapeutic proteins. Drug Discovery Today, 8(5), 212–221. https://doi.org/10.1016/S1359-6446(03)02610-2.

    Article  CAS  PubMed  Google Scholar 

  26. Ravn, U., Didelot, G., Venet, S., Ng, K. T., Gueneau, F., Rousseau, F., et al. (2013). Deep sequencing of phage display libraries to support antibody discovery. Methods, 60(1), 99–110. https://doi.org/10.1016/j.ymeth.2013.03.001.

    Article  CAS  PubMed  Google Scholar 

  27. Hoen, P. A. C., Jirka, S. M. G., TenBroeke, B. R., Schultes, E. A., Aguilera, B., Pang, K. H., et al. (2012). Phage display screening without repetitious selection rounds. Analytical Biochemistry, 421(2), 622–631. https://doi.org/10.1016/j.ab.2011.11.005.

    Article  CAS  PubMed  Google Scholar 

  28. Matochko, W. L., Chu, K., Jin, B., Lee, S. W., Whitesides, G. M., & Derda, R. (2012). Deep sequencing analysis of phage libraries using Illumina platform. Methods, 58(1), 47–55. https://doi.org/10.1016/j.ymeth.2012.07.006.

    Article  CAS  PubMed  Google Scholar 

  29. Barreto, K., Maruthachalam, B. V., Hill, W., Hogan, D., Sutherland, A. R., & Kusalik, A. (2019). Next-generation sequencing-guided identification and reconstruction of antibody CDR combinations from phage selection outputs. Nucleic Acids Research, 5, 2. https://doi.org/10.1093/nar/gkz131.

    Article  Google Scholar 

  30. Wiedmann, M., Wilson, W. J., Czajka, J., Luo, J., Barany, F., & Batt, C. A. (1994). Ligase chain reaction (LCR): Overview and applications. PCR Methods and Applications, 3(4), S51–S64.

    Article  CAS  PubMed  Google Scholar 

  31. Au, L. C., Yang, F. Y., Yang, W. J., Lo, S. H., & Kao, C. F. (1998). Gene synthesis by a LCR-based approach: High-level production of leptin-L54 using synthetic gene in Escherichia coli. Biochemical and Biophysical Research Communications, 248(1), 200–203. https://doi.org/10.1006/bbrc.1998.8929.

    Article  CAS  PubMed  Google Scholar 

  32. Dillon, P. J., & Rosen, C. A. (1990). A rapid method for the construction of synthetic genes using the polymerase chain reaction. BioTechniques, 9(3), 298–300.

    CAS  PubMed  Google Scholar 

  33. Sandhu, G. S., Aleff, R. A., & Kline, B. C. (1992). Dual asymmetric PCR: One-step construction of synthetic genes. BioTechniques, 12(1), 14–16.

    CAS  PubMed  Google Scholar 

  34. Wu, G., Wolf, J. B., Ibrahim, A. F., Vadasz, S., Gunasinghe, M., & Freeland, S. J. (2006). Simplified gene synthesis: A one-step approach to PCR-based gene construction. Journal of Biotechnology, 124(3), 496–503. https://doi.org/10.1016/j.jbiotec.2006.01.015.

    Article  CAS  PubMed  Google Scholar 

  35. Gao, X., Gulari, E., & Zhou, X. (2004). In situ synthesis of oligonucleotide microarrays. Biopolymers, 73(5), 579–596. https://doi.org/10.1002/bip.20005.

    Article  CAS  PubMed  Google Scholar 

  36. Richmond, K. E., Li, M.-H., Rodesch, M. J., Patel, M., Lowe, A. M., Kim, C., et al. (2004). Amplification and assembly of chip-eluted DNA (AACED): A method for high-throughput gene synthesis. Nucleic Acids Research, 32(17), 5011–5018. https://doi.org/10.1093/nar/gkh793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moorcroft, M. J., Meuleman, W. R. A., Latham, S. G., Nicholls, T. J., Egeland, R. D., & Southern, E. M. (2005). In situ oligonucleotide synthesis on poly(dimethylsiloxane): A flexible substrate for microarray fabrication. Nucleic Acids Research, 33(8), e75. https://doi.org/10.1093/nar/gni075.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cox, J. C., Lape, J., Sayed, M. A., & Hellinga, H. W. (2007). Protein fabrication automation. Protein Science, 16(3), 379–390. https://doi.org/10.1110/ps.062591607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kunkel, T. A. (1985). Rapid and efficient site-specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences USA, 82(2), 488–492.

    Article  CAS  Google Scholar 

  40. de Wildt, R. M. T., Tomlinson, I. M., Mundy, C. R., & Gorick, B. D. (2000). Antibody arrays for high-throughput screening of antibody–antigen interactions. Nature Biotechnology, 18(9), 989–994. https://doi.org/10.1038/79494.

    Article  CAS  PubMed  Google Scholar 

  41. Krebs, B., Rauchenberger, R., Reiffert, S., Rothe, C., Tesar, M., Thomassen, E., et al. (2001). High-throughput generation and engineering of recombinant human antibodies. Journal of Immunological Methods, 254(1–2), 67–84. https://doi.org/10.1016/S0022-1759(01)00398-2.

    Article  CAS  PubMed  Google Scholar 

  42. Gupta, P. B., Onder, T. T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R. A., et al. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 138(4), 645–659. https://doi.org/10.1016/j.cell.2009.06.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bleicher, K. H., Böhm, H.-J., Müller, K., & Alanine, A. I. (2003). A guide to drug discovery: Hit and lead generation: Beyond high-throughput screening. Nature Reviews Drug Discovery, 2(5), 369–378. https://doi.org/10.1038/nrd1086.

    Article  CAS  PubMed  Google Scholar 

  44. Dietrich, J. A., McKee, A. E., & Keasling, J. D. (2010). High-throughput metabolic engineering: Advances in small-molecule screening and selection. Annual Review of Biochemistry, 79(1), 563–590. https://doi.org/10.1146/annurev-biochem-062608-095938.

    Article  CAS  PubMed  Google Scholar 

  45. Fellouse, F. A., Esaki, K., Birtalan, S., Raptis, D., Cancasci, V. J., Koide, A., et al. (2007). High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. Journal of Molecular Biology, 373(4), 924–940. https://doi.org/10.1016/j.jmb.2007.08.005.

    Article  CAS  PubMed  Google Scholar 

  46. Persson, H., Ye, W., Wernimont, A., Adams, J. J., Koide, A., Koide, S., et al. (2013). CDR-H3 diversity is not required for antigen recognition by synthetic antibodies. Journal of Molecular Biology, 425(4), 803–811. https://doi.org/10.1016/j.jmb.2012.11.037.

    Article  CAS  PubMed  Google Scholar 

  47. Tonikian, R., Zhang, Y., Boone, C., & Sidhu, S. S. (2007). Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries. Nature Protocols, 2(6), 1368–1386. https://doi.org/10.1038/nprot.2007.151.

    Article  CAS  PubMed  Google Scholar 

  48. Lee, C. V., Sidhu, S. S., & Fuh, G. (2004). Bivalent antibody phage display mimics natural immunoglobulin. Journal of Immunological Methods, 284(1–2), 119–132. https://doi.org/10.1016/j.jim.2003.11.001.

    Article  CAS  PubMed  Google Scholar 

  49. Baneyx, F. (1999). Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology, 10(5), 411–421. https://doi.org/10.1016/S0958-1669(99)00003-8.

    Article  CAS  PubMed  Google Scholar 

  50. Hardjasa, A., Ling, M., Ma, K., & Yu, H. (2010). Investigating the effects of DMSO on PCR fidelity using a restriction digest-based method. Journal of Experimental Microbiology and Immunology (JEMI), 14(April), 161–164.

    Google Scholar 

  51. Chevet, E., Lemaie, G., & Katinka, M. D. (1995). Low concentrations of tetramethylammonium chloride increase yield and specificity of PCR. Nucleic Acids Research, 23(16), 3343–3344. https://doi.org/10.1093/nar/23.16.3343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chung, C. T., & Miller, R. H. (1988). A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Research, 16(8), 3580. https://doi.org/10.1093/nar/16.8.3580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Howard, G., & Kaser, M. (2007). Making and using antibodies: A practical handbook. Lavoisier.Fr. Retrieved from http://books.google.com/books?hl=en&lr=&id=yZQiab1lxEYC&oi=fnd&pg=PA1&dq=Making+and+using+antibodies:+A+practical+handbook&ots=5T0RVvlbOw&sig=N0or4QYBKnaQZCpPU7WgKA9Y7Gg.

  54. Slupphaug, G., Eftedal, I., Kavli, B., Bharati, S., Helle, N. M., & Haug, T. (1995). Properties of a recombinant human uracil-DNA glycosylase from the UNG gene and evidence that UNG encodes the major uracil-DNA glycosylase. Biochemistry, 34(1), 128–138.

    Article  CAS  PubMed  Google Scholar 

  55. Cedergren-Zeppezauer, E. S., Larsson, G., Olof Nyman, P., Dauter, Z., & Wilson, K. S. (1992). Crystal structure of a dUTPase. Nature, 355(6362), 740–743. https://doi.org/10.1038/355740a0.

    Article  CAS  PubMed  Google Scholar 

  56. Soltes, G., Barker, H., Marmai, K., Pun, E., Yuen, A., & Wiersma, E. J. (2003). A new helper phage and phagemid vector system improves viral display of antibody Fab fragments and avoids propagation of insert-less virions. Journal of Immunological Methods, 274(1–2), 233–244. https://doi.org/10.1016/S0022-1759(02)00294-6.

    Article  CAS  PubMed  Google Scholar 

  57. Soltes, G., Hust, M., Ng, K. K. Y., Bansal, A., Field, J., Stewart, D. I. H., et al. (2007). On the influence of vector design on antibody phage display. Journal of Biotechnology, 127(4), 626–637. https://doi.org/10.1016/j.jbiotec.2006.08.015.

    Article  CAS  PubMed  Google Scholar 

  58. Huang, H., Economopoulos, N. O., Liu, B. A., Uetrecht, A., Gu, J., Jarvik, N., et al. (2015). Selection of recombinant anti-SH3 domain antibodies by high-throughput phage display. Protein Science, 24, 1890–1900. https://doi.org/10.1002/pro.2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sidhu, S. S. (2001). Engineering M13 for phage display. Biomolecular Engineering, 18(2), 57–63. https://doi.org/10.1016/S1389-0344(01)00087-9.

    Article  CAS  PubMed  Google Scholar 

  60. Wals, K., & Ovaa, H. (2014). Unnatural amino acid incorporation in E. coli: current and future applications in the design of therapeutic proteins. Frontiers in Chemistry, 2, 15. https://doi.org/10.3389/fchem.2014.00015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, G., Gorelik, L., Simon, K. J., Pavlenco, A., Cheung, A., & Brickelmaier, M. (2015). Synthetic antibodies and peptides recognizing progressive multifocal leukoencephalopathyspecific point mutations in polyomavirus JC capsid viral protein 1. mAbs, 7(4), 681–692. https://doi.org/10.1080/19420862.2015.1038447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dobson, C. M. (2003). Protein folding and misfolding. Nature, 426(6968), 884–890. https://doi.org/10.1038/nature02261.

    Article  CAS  PubMed  Google Scholar 

  63. Soto, C. (2003). Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Reviews Neuroscience, 4(1), 49–60. https://doi.org/10.1038/nrn1007.

    Article  CAS  PubMed  Google Scholar 

  64. Kiefhaber, T., Rudolph, R., Kohler, H.-H., & Buchner, J. (1991). Protein aggregation in vitro and in vivo: A quantitative model of the kinetic competition between folding and aggregation. Bio/Technology, 9(9), 825–829. https://doi.org/10.1038/nbt0991-825.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Y. Cabrera for optimization assistance with the ELISA detection screen and are also grateful to L. Moffat for helpful discussions and comments. This work was supported by the Charles H. Best Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Gallo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 17 kb)

Supplementary material 2 (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallo, E. A High-Throughput Platform for the Generation of Synthetic Ab Clones by Single-Strand Site-Directed Mutagenesis. Mol Biotechnol 61, 410–420 (2019). https://doi.org/10.1007/s12033-019-00171-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00171-9

Keywords

Navigation