Skip to main content
Log in

A Novel Mini Protein Design of Haloalkane Dehalogenase

  • Original paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The application of native enzymes may not be economical owing to the stability factor. A smaller protein molecule may be less susceptible to external stresses. Haloalkane dehalogenases (HLDs) that act on toxic haloalkanes may be incorporated as bioreceptors to detect haloalkane contaminants. Therefore, this study aims to develop mini proteins of HLD as an alternative bioreceptor which was able to withstand extreme conditions. Initially, the mini proteins were designed through computer modeling. Based on the results, five designed mini proteins were deemed to be viable stable mini proteins. They were then validated through experimental study. The smallest mini protein (model 5) was chosen for subsequent analysis as it was expressed in soluble form. No dehalogenase activity was detected, thus the specific binding interaction of between 1,3-dibromopropane with mini protein was investigated using isothermal titration calorimetry. Higher binding affinity between 1,3-dibromopropane and mini protein was obtained than the native. Thermal stability study with circular dichroism had proven that the mini protein possessed two times higher Tm value at 83.73 °C than the native at 43.97 °C. In conclusion, a stable mini protein was successfully designed and may be used as bioreceptors in the haloalkane sensor that is suitable for industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Newman, J., Peat, T. S., Richard, R., Kan, L., Swanson, P. E., Affholter, J. A., Holmes, I. H., Schindler, J. F., Unkefer, C. J., & Terwilliger, T. C. (1999). Haloalkane dehalogenases: Structure of a Rhodococcus Enzyme. Biochemistry, 38, 16105–16114.

    Article  CAS  PubMed  Google Scholar 

  2. Li, Y., Zhang, R., Du, L., Zhang, Q., & Wang, W. (2016). Catalytic mechanism of C–F bond cleavage: Insights from QM/MM analysis of fluoroacetate dehalogenase. Catalysis Science and Technology, 6, 73–80.

    Article  CAS  Google Scholar 

  3. Li, Y., Zhang, R., Du, L., Zhang, Q., & Wang, W. (2016). How many conformations of enzymes should be sampled for DFT/MM calculations? A case study of fluoroacetate dehalogenase. International Journal of Molecular Sciences, 17, 1372.

    Article  CAS  PubMed Central  Google Scholar 

  4. Wang, J., Tang, X., Li, Y., Zhang, R., Zhu, L., Chen, J., Sun, Y., Zhang, Q., & Wanga, W. (2018). Computational evidence for the degradation mechanism of haloalkane dehalogenase LinB and mutants of Leu248 to 1-chlorobutane. Physical Chemistry Chemical Physics, 20(31), 20540–20547.

    Article  CAS  PubMed  Google Scholar 

  5. Tang, X., Zhang, R., Li, Y., Zhang, Q., & Wang, W. (2017). Enantioselectivity of haloalkane dehalogenase LinB on the degradation of 1,2-dichloropropane: A QM/MM study. Bioorganic Chemistry, 73, 16–23.

    Article  CAS  PubMed  Google Scholar 

  6. Chan, W. Y., Wong, M., Guthrie, J., Savchenko, A. V., Yakunin, A. F., Pai, E. F., & Edwards, E. A. (2010). Sequence- and activity-based screening of microbial genomes for novel dehalogenases. Microbial Biotechnology, 3, 107–120.

    Article  CAS  PubMed  Google Scholar 

  7. Jesenska, A., Monincova, M., Koudelakova, T., Hasan, K., Chaloupkova, R., Prokop, Z., Geerlof, A., & Damborsky, J. (2009). Biochemical characterization of haloalkane dehalogenases DrbA and DmbC, representatives of a novel subfamily. Applied and Environmental Microbiology, 75, 5157–5160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jesenska, A., Pavlova, M., Strouhal, M., Chaloupkova, R., Tesinska, I., Monincova, M., Prokop, Z., Bartos, M., Pavlik, I., Rychlik, I., Möbius, P., Nagata, Y., & Damborsky, J. (2005). Cloning, biochemical properties, and distribution of mycobacterial haloalkane dehalogenases. Applied and Environmental Microbiology, 71, 6736–6745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bidmanova, S., Damborsky, J., & Prokop, Z. (2013). Immobilization of haloalkane dehalogenase LinB from Sphingobium japonicum UT26 for biotechnological applications. Journal of Biocatalysis and Biotransformation, 2(1), 2.

    Google Scholar 

  10. Bhalla, N., Jolly, P., Formisano, N., & Estrela, P. (2016). Introduction to biosensors. Essays in Biochemistry, 60(1), 1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang, F., Xiao, J., Pan, L., Yang, M., Zhang, G., Jin, S., & Yu, J. (2008). A systematic survey of mini-proteins in bacteria and archaea. PLoS ONE, 3(12).

  12. Khoury, G. A., Smadbeck, J., Kieslich, C. A., & Floudas, C. A. (2013). Protein folding and de novo protein design for biotechnological applications. Trends in Biotechnology, 32(2), 99–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuah, E., Toh, S., Yee, J., Ma, Q., & Gao, Z. (2016). Enzyme mimics: Advances and applications. Chemistry A Europian Journal, 22(25), 8404–8430.

    Article  CAS  Google Scholar 

  14. Lassila, J. K., Privett, H. K., Allen, B. D., & Mayo, S. L. (2006). Combinatorial methods for small molecule placement in computational enzyme design. Proceedings of National Academy of Sciences USA, 103(45), 16710–16715.

    Article  CAS  Google Scholar 

  15. Holtje, H. D., Sippl, W., Rognan, D., & Folkers, G. (2008). Molecular modeling: Basic principles and applications. Weinheim: Wiley.

    Google Scholar 

  16. Hansen, L. D., Transtrum, M. K., Quinn, C., & Demarse, N. (2016). Enzyme-catalyzed and binding reaction kinetics determined by titration calorimetry. Biochimica et Biophysica Acta, 1860, 957–966.

    Article  CAS  PubMed  Google Scholar 

  17. Polticelli, F., Raybaudi-Massilia, G., & Ascenzi, P. (2001). Structural determinants of mini-protein stability. Biochemistry and Molecular Biology Education, 29, 16–20.

    Article  CAS  Google Scholar 

  18. Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular System Biology, 7(1), 539.

    Article  Google Scholar 

  19. Krieger, E., Darden, T., Nabuurs, S. B., Finkelstein, A., & Vriend, G. (2004). Making optimal use of empirical energy functions: Force-field parameterization in crystal space. Proteins, 57, 678–683.

    Article  CAS  PubMed  Google Scholar 

  20. Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Conformation of polypeptides and proteins. Journal of Molecular Biology, 7, 95–99.

    Article  CAS  PubMed  Google Scholar 

  21. Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. New York: Cold Spring Harbor laboratory press.

    Google Scholar 

  23. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye-binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  24. Iwasaki, I., Utsumi, S., & Ozawa, T. (1952). New colorimetric determination of chloride using mercuric thiocyanate and ferric ion. Bulletin of the Chemical Society of Japan, 25, 226.

    Article  CAS  Google Scholar 

  25. Marvanova, S., Nagata, Y., Wimmerova, M., Sykorova, J., Hynkova, K., & Damborsky, J. (2001). Biochemical characterization of broad- specificity enzymes using multivariate experimental design and a colorimetric microplate assay: Characterization of the haloalkane dehalogenase mutants. Journal of Microbiological Methods, 44, 149–157.

    Article  CAS  PubMed  Google Scholar 

  26. Yang, J. T., Wu, C. S., & Martinez, H. M. (1986). Calculation of protein conformation from circular dichroism. Methods in Enzymology, 130, 69–208.

    Google Scholar 

  27. Koudelakova, T., Chovancova, E., Brezovsky, J., Monincova, M., Fortova, A., Jarkovsky, J., & Damborsky, J. (2011). Substrate specificity of haloalkane dehalogenases. Biochemical Journal, 435(2), 345–354.

    Article  CAS  Google Scholar 

  28. Lau, E. Y., Kahn, K., Bash, P. A., & Bruice, T. C. (2000). The importance of reactant positioning in enzyme catalysis: A hybrid quantum mechanics/molecular mechanics study of a haloalkane dehalogenase. Proceedings of National Academy of Sciences USA, 97(18), 9937–9942.

    Article  CAS  Google Scholar 

  29. Laskowski, R., Macarthur, M., Moss, D., & Thornton, J. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.

    Article  CAS  Google Scholar 

  30. Laskowski, R. A., MacArthur, M. W., & Thornton, J. M. (2001). PROCHECK: Validation of protein structure coordinates. In M. G. Rossmann & E. Arnold (Eds.), International Tables of Crystallography (F: crystallography of biological macro-molecules, pp. 722–725). Dordrecht: Kluwer.

    Google Scholar 

  31. Bisignano, P., & Moran, O. (2010). Molecular dynamics analysis of the wild type and dF508 mutant structures of the human CFTR–nucleotide binding domain 1. Biochimie, 92, 51–57.

    Article  CAS  PubMed  Google Scholar 

  32. Schymkowitz, J. W. H., Rousseau, F., Martin, I. C., Ferkinghoff-Borg, J., Stricher, F., & Serrano, L. (2005). Prediction of water and metal binding sites and their affinities by using the fold-X force field. Proceedings of National Academy of Sciences USA, 102(29), 10147–10152.

    Article  CAS  Google Scholar 

  33. Jeffery, C. J., Gloss, L. M., Petsko, G. A., & Ringe, D. (2000). The role of residues outside the active site: Structural basis for function of C191 mutants of Escherichia coli aspartate amino transferase. Protein Enggineering, 13(2), 105–112.

    Article  CAS  Google Scholar 

  34. Klepeis, J. L., Lindorff-larsen, K., Dror, R. O., & Shaw, D. E. (2009). Long-timescale molecular dynamics simulations of protein structure and function. Current Opinion in Structural Biology, 19, 120–127.

    Article  CAS  PubMed  Google Scholar 

  35. Nosoh, Y., & Sekiguchi, T. (1991). Protein stability and stabilization through protein engineering. New York: Ellis Horwood Limited.

    Google Scholar 

  36. Kukol, A. (2008). Molecular modeling of proteins. United States: Humana Press. Springer science.

    Book  Google Scholar 

  37. Peerayeh, S. N., Atoofi, J., Hoseinkhani, S., & Farshchian, M. (2009). Cloning and expression of Helicobacter pylori HpaA gene. Yakhteh Medical Journal, 11(3), 273–276.

    CAS  Google Scholar 

  38. Gehret, J. J., Gu, L., Geders, T. W., Brown, W. C., Gerwick, L., Gerwick, W. H., Sherman, D. H., & Smith, J. L. (2011). Structure and activity of DmmA, a marine haloalkane dehalogenase. Protein Science, 21, 239–248.

    Article  CAS  PubMed Central  Google Scholar 

  39. Kusumawati, A., Santoso, A., & Radji, M. (2013). Soluble expression of recombinant human interferon alpha 2a fusion protein in Escherichia coli. International Journal of Pharmaceutical Science and Health Care, 2(3), 42–49.

    Google Scholar 

  40. Damian, L. (2013). Isothermal titration calorimetry for studying protein–ligand interactions. In M. Williams & T. Daviter (Eds.), Protein-ligand interactions: Methods in molecular biology (Methods and Protocols) (p. 1008). Totowa: Humana Press.

    Google Scholar 

  41. Duff, M. R., Grubbs, J., & Howell, E. E. (2011). Isothermal titration calorimetry for measuring macromolecule-ligand affinity. Journal of Visualized Experiments, 55, 2796.

    Google Scholar 

  42. Benjwal, S., Verma, S., Rohm, K.-H., & Gursky, O. (2006). Monitoring protein aggregation during thermal unfolding in circular dichroism experiments. Protein Science, 15(3), 635–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Greenfield, N. J. (2009). Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1(6), 2876–2890.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Geran Universiti Putra Malaysia, Geran Putra Berkumpulan (IPB) (Project Number: GP-IPB/2013/9413500) for supporting our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu Bakar Salleh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 253 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daud, N.H., Leow, T.C., Oslan, S.N. et al. A Novel Mini Protein Design of Haloalkane Dehalogenase. Mol Biotechnol 61, 477–488 (2019). https://doi.org/10.1007/s12033-019-00169-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00169-3

Keywords

Navigation