Molecular Biotechnology

, Volume 61, Issue 4, pp 254–260 | Cite as

Responsiveness and Adaptation to Salt Stress of the REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 (RRTF1) Gene are Controlled by its Promoter

  • Elham R. S. SolimanEmail author
  • Peter Meyer


The REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 (RRTF1) gene encodes a member of the ERF/AP2 transcription factor family involved in redox homeostasis. The RRTF1 gene shows tissue-specific responsiveness to various abiotic stress treatments including a response to salt stress in roots. An interesting feature of this response is an adaptation phase that follows its activation, when promoter levels revert to a base line level, even if salt stress is maintained. It is unclear if adaption is controlled by a switch in promoter activity or by changes in transcript levels. Here we show that the RRTF1 promoter is sufficient for the control of both activation and adaptation to salt stress. As constitutive expression of RRTF1 turned out to be detrimental to the plant, we propose that promoter-regulated adaptation evolved as a protection mechanism to balance the beneficial effects of short-term gene activation and the detrimental effects of long-term gene expression.


Promoter RRTF1 Salt stress Roots Arabidopsis thaliana 



  1. 1.
    Shahmuradov, I. A., Gammerman, A. J., Hancock, J. M., Bramley, P. M., & Solovyev, V. V. (2003). PlantProm: A database of plant promoter sequences. Nucleic Acids Research, 31, 114–117.CrossRefGoogle Scholar
  2. 2.
    Isabelle, B. S., Stéphanie, P., Françoise, C., Juliette, L., & Christophe, B. (2017). 5′ to 3′ mRNA decay contributes to the regulation of arabidopsis seed germination by dormancy. Plant Physiology, 173(3), 1709–1723.CrossRefGoogle Scholar
  3. 3.
    Middleton, A. M., Úbeda-Tomás, S., Griffiths, J., Holman, T., Hedden, P., et al. (2012) Mathematical modeling elucidates the role of transcriptional feedback in gibberellin signaling. Proceedings of the National Academy of Sciences, 109, 7571–7576.CrossRefGoogle Scholar
  4. 4.
    Borsani, O., Zhu, J., Verslues, P. E., Sunkar, R., & Zhu, J.K. (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in arabidopsis. Cell, 123, 1279–1291.CrossRefGoogle Scholar
  5. 5.
    Lämke, J., & Bäurle, I. (2017). Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biology, 18, 124.CrossRefGoogle Scholar
  6. 6.
    Khandelwal, A., Elvitigala, T., Ghosh, B., & Quatrano, R. S. (2008). Arabidopsis transcriptome reveals control circuits regulating redox homeostasis and the role of an AP2 transcription factor. Plant Physiology, 148, 2050–2058.CrossRefGoogle Scholar
  7. 7.
    Jen, C.-H., Michalopoulos, I., Westhead, D., & Meyer, P. (2005). Natural antisense transcripts with coding capacity in Arabidopsis may have a regulatory role that is not linked to double-stranded RNA degradation. Genome Biology, 6, R51.CrossRefGoogle Scholar
  8. 8.
    Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., & Gruissem, W. (2004). GENEVESTIGATOR. arabidopsis microarray database and analysis toolbox. Plant Physiology, 136, 2621–2632.CrossRefGoogle Scholar
  9. 9.
    Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., et al. (2007). The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. The Plant Journal, 50, 347–363.CrossRefGoogle Scholar
  10. 10.
    Fang, Y.Y., Zhao, J.H., Liu, S.W., Wang, S., Duan, C.G., & Guo, H.S. (2016). CMV2b-AGO interaction is required for the suppression of RDR-dependent antiviral silencing in Arabidopsis. Frontiers in Microbiology, 7, 1329.Google Scholar
  11. 11.
    McHale, M., Eamens, A. L., Finnegan, E. J., & Waterhouse, P. M. (2013). A 22-nt artificial micro-RNAmediates widespread RNA silencing in Arabidopsis. The Plant Journal, 76(3), 519–529.CrossRefGoogle Scholar
  12. 12.
    Katiyar-Agarwal, S., Morgan, R., Dahlbeck, D., Borsani, O., Villegas, A., et al. (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proceedings of the National Academy of Sciences, 103, 18002–18007.CrossRefGoogle Scholar
  13. 13.
    Hu, Y., Chen, L., Wang, H., Zhang, L., Wang, F., & Yu, D. (2013). Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. The Plant Journal, 74, 730–745.CrossRefGoogle Scholar
  14. 14.
    Karan, R., DeLeon, T., Biradar, H., & Subudhi, P. K. (2012). Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS ONE, 7, e40203.CrossRefGoogle Scholar
  15. 15.
    Pandey, G., Sharma, N., Sahu, P. P., & Prasad, M. (2016). Chromatin-based epigenetic regulation of plant abiotic stress response. Current Genomics, 17(6), 490–498.CrossRefGoogle Scholar
  16. 16.
    Zubko, E., Gentry, M., Kunova, A., & Meyer, P. (2012). De novo DNA methylation activity of METHYLTRANSFERASE 1 (MET1) partially restores body methylation in Arabidopsis thaliana. The Plant Journal, 71, 1029–1037.CrossRefGoogle Scholar
  17. 17.
    Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H. L., & Poethig, R. S. (2004). SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes & Development, 18, 2368–2379.CrossRefGoogle Scholar
  18. 18.
    Kankel, M. W., Ramsey, D. E., Stokes, T. L., Flowers, S. K., Haag, J. R., Jeddeloh, J. A., et al. (2003). Arabidopsis MET1 cytosine methyltransferase mutants. Genetics, 163, 1109–1122.Google Scholar
  19. 19.
    Adamo, A. (2008). Characterisation of unusual transcript classes. In Arabidopsis thaliana (196 p). Leeds: University of Leeds.Google Scholar
  20. 20.
    Gallois, J.-L., Woodward, C., Reddy, G. V., & Sablowski, R. (2002). Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development, 129, 3207–3217.Google Scholar
  21. 21.
    Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16, 735–743.CrossRefGoogle Scholar
  22. 22.
    Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., et al. (2007). The At Gen Express global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant Journal, 50, 347–363.CrossRefGoogle Scholar
  23. 23.
    Livak, K., & Schmittgen, T. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 −∆∆CT method. Methods, 25, 402–408.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Botany and Microbiology department, Faculty of ScienceHelwan UniversityCairoEgypt
  2. 2.Center for Plant SciencesUniversity of LeedsLeedsUK

Personalised recommendations