The Growth Differentiation Factor 11 is Involved in Skin Fibroblast Ageing and is Induced by a Preparation of Peptides and Sugars Derived from Plant Cell Cultures


Ageing is a complex and progressive phenomenon, during which the accumulation of morphological and chemical changes seriously compromises the capacity of the cells to proliferate and fulfil their biological tasks. The increase in the average age of the world population, associated with a higher occurrence of age-related diseases, is prompting scientific research to look for new strategies and molecular targets that may help in alleviating age-related phenotypes. Growth factors, responsible for modulating several aging markers in many tissues and organs, represent valuable targets to fight age-associated dysfunctions. The growth differentiation factor GDF11, a TGF-β family member, has been associated with the maintenance of youth phenotypes in different human tissues and organs, and in the skin has been related to an inhibition of the inflammatory response. We investigated the role of GDF11 in skin dermal fibroblasts, and we observed that its expression and activity were reduced in fibroblasts deriving from adult donors compared to neonatal ones. The main effect of GDF11 was the induction of collagen I and III, in both neonatal and adult fibroblasts, by triggering Smad signalling in a TGF-β-like fashion. Moreover, by analysing a number of plant extracts having GDF11 inducing activity, we found that a peptide/sugar preparation, obtained from Lotus japonicus somatic embryo cultures, was capable of restoring GDF11 expression in older fibroblasts and to activate the synthesis of collagen I, collagen III and periostin, an important protein involved in collagen assembly.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Varani, J., Dame, M. K., Rittie, L., Fligiel, S. E. G., Kang, S., Fisher, G. J., & Voorhees, J. J. (2006). Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. American Journal of Pathology, 168, 1861–1868.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Tigges, J., Krutmann, J., Fritsche, E., Haendeler, J., Schaal, H., Fischer, J. W., Kalfalah, F., Reinke, H., Reifenberger, G., Stühler, K., Ventura, N., Gundermann, S., Boukamp, P., & Boege, F. (2014). The hallmarks of fibroblast ageing. Mechanisms of Ageing and Development, 138, 26–44.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Frantz, C., Stewart, K. M., & Weaver, V. M. (2010). The extracellular matrix at a glance. Journal of Cell Science, 123, 4195–4200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kudo, A. (2011). Periostin in fibrillogenesis for tissue regeneration: periostin actions inside and outside the cell. Cellular and Molecular Life Sciences, 68, 3201–3207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Yamaguchi, Y. (2014). Periostin in skin tissue and skin-related diseases. Allergology International, 63, 161–170.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Quan, T., Shao, Y., He, T., Voorhees, J. J., & Fisher, G. J. (2010). Reduced expression of connective tissue growth factor (CTGF/CCN2) mediates collagen loss in chronologically aged human skin. Journal of Investigative Dermatology, 130(2), 415–424.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Fabi, S., & Sundaram, H. (2014). The potential of topical and injectable growth factors and cytokines for skin rejuvenation. Facial Plastic Surgery, 30(2), 157–171.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Sakaki-Yumoto, M., Katsuno, Y., & Derynck, R. (2013). TGF-β family signaling in stem cells. Biochimica et Biophysica Acta, 1830, 2280–2296.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Oh, S. P., Yeo, C. Y., Lee, Y., Schrewe, H., Whitman, M., & Li, E. (2002). Activin type IIA and IIB receptors mediate Gdf11 signaling in axial vertebral patterning. Genes and Development, 16, 2749–2754.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Loffredo, F. S., Steinhauser, M. L., Jay, S. M., Gannon, J., Pancoast, J. R., Yalamanchi, P., Sinha, M., Dall’Osso, C., Khong, D., Shadrach, J. L., Miller, C. M., Singer, B. S., Stewart, A., Psychogios, N., Gerszten, R. E., Hartigan, A. J., Kim, M. J., Serwold, T., Wagers, A. J., & Lee, R. T. (2013). Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell, 153, 828–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Carlson, M. E., Suetta, C., Conboy, M. J., Aagaard, P., Mackey, A., Kjaer, M., & Conboy, I. (2009). Molecular aging and rejuvenation of human muscle stem cells. EMBO Molecular Medicine, 1, 381–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Mei, W., Xiang, G., Li, Y., Li, H., Xiang, L., Lu, J., Xiang, L., Dong, J., & Liu, M. (2016). GDF11 protects against endothelial injury and reduces atherosclerotic lesion formation in apolipoprotein E-Null mice. Molecular Therapy, 24, 1926–1938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Villeda, S. A., Luo, J., Mosher, K. I., Zou, B., Britschgi, M., Bieri, G., Stan, T. M., Fainberg, N., Ding, Z., Eggel, A., Lucin, K. M., Czirr, E., Park, J. S., Couillard-Després, S., Aigner, L., Li, G., Peskind, E. R., Kaye, J. A., Quinn, J. F., Galasko, D. R., Xie, X. S., Rando, T. A., & Wyss-Coray, T. (2011). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature, 477, 90–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Finkenzeller, G., Stark, G. B., & Strassburg, S. (2015). Growth differentiation factor 11 supports migration and sprouting of endothelial progenitor cells. Journal of Surgical Research, 198, 50–56.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Gokoffski, K. K., Wu, H. H., Beites, C. L., Kim, J., Kim, E. J., Matzuk, M. M., Johnson, J. E., Lander, A. D., & Calof, A. L. (2011). Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate. Development, 138, 4131–4142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Wang, W., Qu, R., Wang, X., Zhang, M., Zhang, Y., Chen, C., Chen, X., Qiu, C., Li, J., Pan, X., Li, W., & Zhao, Y. (2018) GDF11 antagonizes psoriasis-like skin inflammation via suppression of NF-κB signaling pathway. Inflammation.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Egerman, M. A., Cadena, S. M., Gilbert, J. A., Meyer, A., Nelson, H. N., Swalley, S. E., Mallozzi, C., Jacobi, C., Jennings, L. L., Clay, I., Laurent, G., Ma, S., Brachat, S., Lach-Trifilieff, E., Shavlakadze, T., Trendelenburg, A. U., Brack, A. S., & Glass, D. J. (2015). GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metabolism, 22, 164–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Fan, X., Gaur, U., Sun, L., Yang, D., & Yang, M. (2017). The growth differentiation factor 11 (GDF11) and myostatin (MSTN) in tissue specific aging. Mechanisms of Ageing and Development, 164, 108–112.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Walker, R. G., Czepnik, M., Goebel, E. J., McCoy, J. C., Vujic, A., Cho, M., Oh, J., Aykul, S., Walton, K. L., Schang, G., Bernard, D. J., Hinck, A. P., Harrison, C. A., Martinez-Hackert, E., Wagers, A. J., Lee, R. T., & Thompson, T. B. (2017). Structural basis for potency differences between GDF8 and GDF11. BMC Biology, 15, 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Apone, F., Tito, A., Carola, A., Arciello, S., Tortora, A., Filippini, L., Monoli, I., Cucchiara, M., Gibertoni, S., Chrispeels, M. J., & Colucci, G. (2010). A mixture of peptides and sugars derived from plant cell walls increases plant defense responses to stress and attenuates ageing-associated molecular changes in cultured skin cells. Journal of Biotechnology, 145, 367–376.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Noble, J. E. (2014). Quantification of protein concentration using UV absorbance and Coomassie dyes. Methods Enzymology, 536, 17–26.

    Article  CAS  Google Scholar 

  22. 22.

    Buysse, J., & Merckx, R. (1993). An improved colorimetric method to quantify sugar content of plant tissue. Journal of Experimental Botany, 44, 1627–1629.

    Article  CAS  Google Scholar 

  23. 23.

    Griesinger, C., Otting, G., Wuethrich, K., & Ernst, R. R. (1988). Clean TOCSY for proton spin system identification in macromolecules. Journal of the American Chemical Society, 110, 7870–7872.

    Article  CAS  Google Scholar 

  24. 24.

    Kumar, A., Ernst, R. R., & Wüthrich, K. (1980). A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochemical and Biophysical Research Communications, 95, 1–6.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Piantini, U., Sorensen, O. W., & Ernst, R. R. (1982). Multiple quantum filters for elucidating NMR coupling networks. Journal of the American Chemical Society, 104, 6800–6801.

    Article  CAS  Google Scholar 

  26. 26.

    Bartels, C., Xia, T. H., Billeter, M., Güntert, P., & Wüthrich, K. (1995). The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. Journal of Biomolecular NMR, 6, 1–10.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, I. I., & Thomson, J. A. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Desbrosses, G. G., Kopka, J., & Udvardi, M. K. (2005). Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant-microbe interactions. Plant Physiology, 137, 1302–1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Zhang, X., Wharton, W., Yuan, Z., Tsai, S. C., Olashaw, N., & Seto, E. (2004). Activation of the Growth-differentiation factor 11 gene by the histone deacetylase (HDAC) inhibitor trichostatin A and repression by HDAC3. Molecular and Cellular Biology, 24, 5106–5118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Inman, G. J., Nicolás, F. J., Callahan, J. F., Harling, J. D., Gaster, L. M., Reith, A. D., Laping, N. J., & Hill, C. S. (2002). SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Molecular Pharmacology, 62, 65–74.

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Conese, M., Carbone, A., Beccia, E., & Angiolillo, A. (2017). The fountain of youth: a tale of parabiosis, stem cells, and rejuvenation. Open Medicine, 12, 376–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Zhang, Y., Wei, Y., Liu, D., Liu, F., Li, X., Pan, L., Pang, Y., & Chen, D. (2017). Role of growth differentiation factor 11 in development, physiology and disease. Oncotarget, 8, 81604–81616.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Oliver, N., Sternlicht, M., Gerritsen, K., & Goldschmeding, R. (2010). Could aging human skin use a connective tissue growth factor boost to increase collagen content? Journal of Investigative Dermatology, 130(2), 338–341.

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Mehta, R. C., & Fitzpatrick, R. E. (2007). Endogenous growth factors as cosmeceuticals. Dermatologic Therapy, 20(5), 350–359.

    Article  PubMed  Google Scholar 

  35. 35.

    Kalluri, H., & Banga, A. K. (2011). Transdermal delivery of proteins. An Official Journal of the American Association of Pharmaceutical Scientists, 12(1), 431–441.

    CAS  Google Scholar 

  36. 36.

    Aldag, C., Nogueira, D., & Teixeira, P. S. (2016). Skin rejuvenation using cosmetic products containing growth factors, cytokines, and matrikines: a review of the literature. Leventhal Clinical, Cosmetic and Investigational Dermatology, 9, 411–419.

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Bentley, J. P., Hunt, T. K., Weiss, J. B., Taylor, C. M., Hanson, A. N., Davies, G. H., & Halliday, B. J. (1990). Peptides from live yeast cell derivative stimulate wound healing. Archives of Surgery, 125, 641–646.

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Katayama, K., Armendariz-Borunda, J., Raghow, R., Kang, A. H., & Seyer, J. M. (1993). A pentapeptide from type I procollagen promotes extracellular matrix production. Journal of Biological Chemistry, 268, 9941–9944.

    CAS  PubMed  Google Scholar 

  39. 39.

    Li, S., Liu, L., He, G., & Wu, J. (2018). Molecular targets and mechanisms of bioactive peptides against metabolic syndromes. Food and Function, 9, 42–52.

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Asserin, J., Lati, E., Shioya, T., & Prawitt, J. (2015). The effect of oral collagen peptide supplementation on skin moisture and the dermal collagen network: evidence from an ex vivo model and randomized, placebo-controlled clinical trials. Journal of Cosmetics Dermatology, 14, 291–301.

    Article  Google Scholar 

  41. 41.

    Yang, R., Wang, J., Lin, S., Ye, H., & Chen, F. (2017). In vitro antioxidant activities of the novel pentapeptides Ser-His-Glu-Cys-Asn and Leu-Pro-Phe-Ala-Met and the relationship between activity and peptide secondary structure. Journal of the Science of Food and Agriculture, 97, 1945–1952.

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Pietraszek-Gremplewicz, K., Karamanou, K., Niang, A., Dauchez, M., Belloy, N., Maquart, F. X., Baud, S., & Brézillon, S. (2017) Small leucine-rich proteoglycans and matrix metalloproteinase-14: Key partners? Matrix Biology.

    Article  PubMed  Google Scholar 

  43. 43.

    Tran, K. T., Lamb, P., & Deng, J. S. (2005). Matrikines and matricryptins: implications for cutaneous cancers and skin repair. Journal of Dermatological Science, 40(1), 11–20.

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Tolg, C., Telmer, P., & Turley, E. (2014) Specific sizes of hyaluronan oligosaccharides stimulate fibroblast migration and excisional wound repair. PLoS ONE, 9, e88479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Barbulova, A., Apone, F., & Colucci, G. (2014). Plant cell cultures as source of cosmetic active ingredients. Cosmetics, 1, 94–104.

    Article  Google Scholar 

Download references


We want to thank prof. Maria Antonietta Bellisario (University of Salerno, Italy) and Dr. Lieve Declercq for their critical reading of the article and useful hints. The study was supported by the grant Horizon 2020—PON 2014/2020.

Author information



Corresponding author

Correspondence to Fabio Apone.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figures S1

Supplementary material 1. . 1D [1H] (A) and 1D [13C] (B) spectra of the LJSEC extract in methanol-d4 recorded at 600 MHz. Spectral regions containing sugars resonances are indicated by the red bars. Detailed NMR analysis of the sugar fraction was rather complicated by the extensive spectral overlaps in the region containing most of carbohydrates proton resonances (between 3 and 4 ppm) (panel A). However, anomeric proton signals resonating in a less crowded spectral region, around 5 ppm, could be easily recognized. Figures S2. [1H, 13C] HMQC spectrum of the LjSEC extract in methanol-d4 recorded at 400 MHz. Signals from the anomeric -CH- groups in alpha- and beta-glucose forms are indicated. Figures S3 2D [1H-1H] TOCSY spectrum of LjSEC extract. The peaks arising from amino-acids and sugars are indicated. Leucine, isoleucine, and aspartic acid which, according to the amino acid analysis, were among the most abundant residues in the mixture, could be recognized in the 2D [1H, 1H] spectrum. (PDF 343 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tito, A., Barbulova, A., Zappelli, C. et al. The Growth Differentiation Factor 11 is Involved in Skin Fibroblast Ageing and is Induced by a Preparation of Peptides and Sugars Derived from Plant Cell Cultures. Mol Biotechnol 61, 209–220 (2019).

Download citation


  • Skin ageing
  • Growth differentiation factor 11
  • Neonatal and adult fibroblasts
  • Collagen induction
  • Peptide/sugar extract