Skip to main content
Log in

Effect of C-Terminus Modification in Salmonella typhimurium FliC on Protein Purification Efficacy and Bioactivity

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant flagellin (FliC) has shown low efficacy in purification because of inclusion bodies formation and aggregation. We hypothesized preserving TLR5 binding site of FliC and removing some amino acids could be responsible for aggregation and solubility improvement. Hence, a bioinformatics study was performed to find hotspots in aggregate formation. Protein modeling was carried out by SWISS-MODEL and I-TASSER servers and models were compared by MATRAS server and Chimera 1.11.2. Gene modification was carried out based on bioinformatics studies. Genes, (truncated modified fliC (tmFliC) and full-length fliC (flFliC)), were cloned and expressed in pET-21a vector. Protein purification was carried out using HIS-Tag method. Proliferation assay and also induction of IL-8 in HEK293 cells were performed to confirm bioactivity function of tmFliC. Bioinformatics results showed that partial deletion of C-terminus may increase solubility without unfavorable effect on TLR5 recognition. Also, model comparison showed that this protein may preserve 3D structure. In addition, GlobPlot server demonstrated that tmFliC formed its globular domains which were important in TLR5 recognition. As we expected, high purification efficacy for tmFliC compared with flFliC was also obtained in experimental studies and a proper function for tmFliC was observed. The tmFliC enhanced cell proliferation in HEK293 cells compare with control after 24 h. Also, IL-8 level was increased with stimulation by tmFliC after 24 h. In conclusion, reducing hydrophobicity in C-terminus and deleting necessary amino acids for filament formation may increase protein solubility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ramos, H. C., Rumbo, M., & Sirard, J. C. (2004). Bacterial flagellins: Mediators of pathogenicity and host immune responses in mucosa. Trends in Microbiology, 12(11), 509–517.

    Article  CAS  PubMed  Google Scholar 

  2. Bao, W., Wang, Y., Fu, Y., Jia, X., Li, J., Vangan, N., Bao, L., Hao, H., & Wang, Z. (2015) mTORC1 regulates flagellin-induced inflammatory response in macrophages. PLoS ONE, 10(5), e0125910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gewirtz, A. T., Yu, Y., Krishna, U. S., Israel, D. A., Lyons, S. L., & Peek, R. M. (2004). Helicobacter pylori flagellin evades toll-like receptor 5-mediated innate immunity. Journal of Infectious Diseases, 189(10), 1914–1920.

    Article  CAS  PubMed  Google Scholar 

  4. Taherkhani, R., Farshadpour, F., Makvandi, M., & Samarbafzadeh, A. R. (2014) Cloning of FliC gene from Salmonella typhimurium in the expression vector pVAX1 and evaluation of its expression in eukaryotic cells. Jundishapur Journal of Microbiology, 7(11), e12351.

    PubMed  PubMed Central  Google Scholar 

  5. Faezi, S., Bahrmand, A. R., Mahdavi, M., Siadat, S. D., Nikokar, I., Sardari, S., & Holder, I. A. (2016). High yield overexpression, refolding, purification and characterization of Pseudomonas aeruginosa type B-flagellin: An improved method without sonication. International Journal of Molecular and Cellular Medicine, 5(1), 37.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sormanni, P., Amery, L., Ekizoglou, S., Vendruscolo, M., & Popovic, B. (2017). Rapid and accurate in silico solubility screening of a monoclonal antibody library. Scientific Reports, 7(1), 8200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ducat, T., Declerck, N., Gostan, T., Kochoyan, M., & Demene, H. (2006). Rapid determination of protein solubility and stability conditions for NMR studies using incomplete factorial design. Journal of Biomolecular NMR, 34(3), 137–151.

    Article  CAS  PubMed  Google Scholar 

  8. Trevino, S. R., Scholtz, J. M., & Pace, C. N. (2008). Measuring and increasing protein solubility. Journal of Pharmaceutical Sciences, 97(10), 4155–4166.

    Article  CAS  PubMed  Google Scholar 

  9. Agostini, F., Cirillo, D., Livi, C. M., Ponti, D. R., Tartaglia, G. G. (2014). ccSOL omics: A webserver for solubility prediction of endogenous and heterologous expression in Escherichia coli. Bioinformatics, 30(20), 2975–2977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smialowski, P., Doose, G., Torkler, P., Kaufmann, S., & Frishman, D. (2012). PROSO II—A new method for protein solubility prediction. The FEBS Journal, 279(12), 2192–2200.

    Article  CAS  PubMed  Google Scholar 

  11. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shander, A., Gromiha, M., Fawareh, H., & Sarai, A. (2004). ASA view: Solvent accessibility graphics for proteins. Bioinformatics, 51, 51.

    Google Scholar 

  13. Linding, R., Russell, R. B., Neduva, V., & Gibson, T. J. (2003). GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Research, 31(13), 3701–3708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005) Protein identification and analysis tools on the ExPASy server. Totowa, NJ: Humana Press.

    Book  Google Scholar 

  15. Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., Bordoli, L., & Schwede, T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42, 252–258.

    Article  CAS  Google Scholar 

  16. Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9(1), 40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kawabata, T. (2003). MATRAS: A program for protein 3D structure comparison. Nucleic Acids Research, 31(13), 3367–3369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couchm, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.

    Article  CAS  PubMed  Google Scholar 

  19. de Zoete, M. R., Keestra, A. M., Wagenaar, J. A., & van Putten, J. P. (2010). Reconstitution of a functional Toll-like receptor 5 binding site in Campylobacter jejuni Flagellin. Journal of Biological Chemistry, 285(16), 12149–12158.

    Article  CAS  PubMed  Google Scholar 

  20. Molloy, M. J., Bouladoux, N., & Belkaid, Y. (2012). Intestinal microbiota: Shaping local and systemic immune responses. Seminars in Immunology, 24(1), 58–66.

    Article  CAS  PubMed  Google Scholar 

  21. Skountzou, I., del Pilar Martin, M., Wang, B., Ye, L., Koutsonanos, D., Weldon, W., Jacob, J., & Compans, R. W. (2010). Salmonella flagellins are potent adjuvants for intranasally administered whole inactivated influenza vaccine. Vaccine, 28(24), 4103–4112.

    Article  CAS  PubMed  Google Scholar 

  22. Ahmadian, G., Ghahroudi, M. A., Rastgoo, N., & Mianji, G. R. (2005). Bacterial expression and functional characterization of a naturally occurring exon 6-less preprochymosin cDNA. Iranian Journal of Biotechnology, 3(1), 16–25.

    CAS  Google Scholar 

  23. Ikai, A. (1980). Thermostability and aliphatic index of globular proteins. ‎The Journal of Biochemistry, 88(6), 1895–1898.

    CAS  PubMed  Google Scholar 

  24. Ozin, J. A., Claret, L., Auvray, F., & Hughes, C. (2003). The FliS chaperone selectively binds the disordered flagellin C-terminal D0 domain central to polymerization. FEMS Microbiology Letters, 219, 219–224.

    Article  CAS  PubMed  Google Scholar 

  25. Forstnerič, V., Ivičak-Kocjan, K., Plaper, T., Jerala, R., & Benčina, M. (2017) The role of the C-terminal D0 domain of flagellin in activation of Toll like receptor 5. PLoS Pathogens, 13(8), e1006574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith, K. D., Andersen-Nissen, E., Hayashi, F., Strobe, K., Bergman, M. A., Barrett, S. L. R., Cookson, B. T., & Aderem, A. (2003). Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nature Immunology, 4, 1247.

    Article  CAS  PubMed  Google Scholar 

  27. Vonderviszt, F., Shin-Ichi, A., & Keiichi, N. (1991). Role of the disordered terminal regions of Flagellin in filament formation and stability. Journal of Molecular Biology, 221(4), 1461–1474.

    Article  CAS  PubMed  Google Scholar 

  28. Wan, W., Wille, H., Stöhr, J., Kendall, A., Bian, W., McDonald, M., … Stubbs, G. (2015). Structural studies of truncated forms of the prion protein PrP. Biophysical Journal, 108(6), 1548–1554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rigi, G., Beyranvand, P., Ghaedmohammadi, S., Heidarpanah, S., Akbari Noghabi, K., & Ahmadian, G. (2015) Comparison of the extracellular full-length and truncated recombinant protein A production in Escherichia coli BL21 (DE3). Journal of Paramedical Sciences, 6(3), 2008–4978.

    Google Scholar 

  30. Strub, C., Alies, C., Lougarre, A., Ladurantie, C., Czaplicki, J., & Fournier, D. (2004). Mutation of exposed hydrophobic amino acids to arginine to increase protein stability. BMC Biochemistry, 5, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gupta, S. K., Deb, R., Gaikwad, S., Saravanan, R., Mohan, C. M., & Dey, S. (2013). Recombinant flagellin and its cross-talk with lipopolysaccharide—Effect on pooled chicken peripheral blood mononuclear cells. Research in Veterinary Science, 95, 930–935.

    Article  CAS  PubMed  Google Scholar 

  32. Kogut, M. H., Iqbal, M., He, H., Philbin, V., Kaiser, P., & Smith, A. (2005). Expression and function of Toll-like receptors in chicken heterophils. Developmental and Comparative Immunology, 29, 791–807.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to show their gratitude to Dr. Majid Esmaelizad from Razi Vaccine and Serum Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Bagheri.

Ethics declarations

Conflict of interest

The authors confirm that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khani, Mh., Bagheri, M., Dehghanian, A. et al. Effect of C-Terminus Modification in Salmonella typhimurium FliC on Protein Purification Efficacy and Bioactivity. Mol Biotechnol 61, 12–19 (2019). https://doi.org/10.1007/s12033-018-0135-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0135-y

Keywords

Navigation