Abstract
Endoglucanase Cel9A from Alicyclobacillus acidocaldarius (AaCel9A) has an Ig-like domain and the enzyme stability is dependent to calcium. In this study the effect of calcium on the structure and stability of the wild-type enzyme and the truncated form (the wild-type enzyme without Ig-like domain, AaCel9AΔN) was investigated. Fluorescence quenching results indicated that calcium increased and decreased the rigidity of the wild-type and truncated enzymes, respectively. RMSF results indicated that AaCel9A has two flexible regions (regions A and B) and deleting the Ig-like domain increased the truncated enzyme stability by decreasing the flexibility of region B probably through increasing the hydrogen bonds. Calcium contact map analysis showed that deleting the Ig-like domain decreased the calcium contacting residues and their calcium binding affinities, especially, in region B which has a role in calcium binding site in AaCel9A. Metal depletion and activity recovering as well as stability results showed that the structure and stability of the wild-type and truncated enzymes are completely dependent on and independent of calcium, respectively. Finally, one can conclude that the deletion of Ig-like domain makes AaCel9AΔN independent of calcium via decreasing the flexibility of region B through increasing the hydrogen bonds. This suggests a new role for the Ig-like domain which makes AaCel9A structure dependent on calcium.










Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- AaCel9A:
-
Alicyclobacillus acidocaldarius endoglucanase Cel9A
- AaCel9AΔN:
-
AaCel9A without Ig-like domain
- CBD:
-
Carbohydrate binding domain
- Ig-like:
-
Immunoglobulin-like
- MD:
-
Molecular dynamics
- RDF:
-
Radial distribution function
- RMSF:
-
Root-mean-square fluctuation
References
Liao, J. C., Mi, L., Pontrelli, S., & Luo, S. (2016). Fuelling the future: Microbial engineering for the production of sustainable biofuels. Nature Reviews Microbiology, 14, 288–304.
Mussatto, S. I., Dragone, G., Guimarães, P. M., Silva, J. P. A., Carneiro, L. M., Roberto, I. C., Vicente, A., Domingues, L., & Teixeira, J. A. (2010). Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, 28, 817–830.
Lin, C., Shen, Z., & Qin, W. (2017). Characterization of xylanase and cellulase produced by a newly isolated Aspergillus fumigatus N2 and its efficient saccharification of Barley Straw. Applied Biochemistry and Biotechnology, 182, 559–569.
Cao, Y., & Tan, H. (2004). Structural characterization of cellulose with enzymatic treatment. Journal of Molecular Structure, 705, 189–193.
Bayer, E. A., Chanzy, H., Lamed, R., & Shoham, Y. (1998). Cellulose, cellulases and cellulosomes. Current Opinion in Structural Biology, 8, 548–557.
Knowles, J., Lehtovaara, P., & Teeri, T. (1987). Cellulase families and their genes. Trends in Biotechnology, 5, 255–261.
Zhang, Y.-H. P., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, 24, 452–481.
Wilson, D. B., & Irwin, D. C. (1999). Genetics and properties of cellulases. In G. T. Tsao, et al. (Eds.), Recent progress in bioconversion of lignocellulosics. Advances in biochemical engineering/biotechnology (Vol. 65). Berlin, Heidelberg: Springer.
Berka, R. M., Grigoriev, I. V., Otillar, R., Salamov, A., Grimwood, J., Reid, I., Ishmael, N., John, T., Darmond, C., & Moisan, M.-C. (2011). Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nature Biotechnology, 29, 922–927.
Bhalla, A., Bansal, N., Kumar, S., Bischoff, K. M., & Sani, R. K. (2013). Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresource Technology, 128, 751–759.
Dick, M., Weiergräber, O. H., Classen, T., Bisterfeld, C., Bramski, J., Gohlke, H., & Pietruszka, J. (2016). Trading off stability against activity in extremophilic aldolases. Scientific Reports, 6, 17908.
Kim, S. J., Joo, J. E., Jeon, S. D., Hyeon, J. E., Kim, S. W., Um, Y. S., & Han, S. O. (2016). Enhanced thermostability of mesophilic endoglucanase Z with a high catalytic activity at active temperatures. International Journal of Biological Macromolecules, 86, 269–276.
Moran-Mirabal, J. M., Bolewski, J. C., & Walker, L. P. (2011). Reversibility and binding kinetics of Thermobifida fusca cellulases studied through fluorescence recovery after photobleaching microscopy. Biophysical Chemistry, 155, 20–28.
Eckert, K., Zielinski, F., Lo Leggio, L., & Schneider, E. (2002). Gene cloning, sequencing, and characterization of a family 9 endoglucanase (CelA) with an unusual pattern of activity from the thermoacidophile Alicyclobacillus acidocaldarius ATCC27009. Applied Microbiology and Biotechnology, 60, 428–436.
Pereira, J. H., Sapra, R., Volponi, J. V., Kozina, C. L., Simmons, B., & Adams, P. D. (2009). Structure of endoglucanase Cel9A from the thermoacidophilic Alicyclobacillus acidocaldarius. Acta Crystallographica Section D: Biological Crystallography, 65, 744–750.
Eckert, K., Vigouroux, A., Leggio, L. L., & Moréra, S. (2009). Crystal structures of A. acidocaldarius endoglucanase Cel9A in complex with cello-oligosaccharides: Strong -1 and -2 subsites mimic cellobiohydrolase activity. Journal of Molecular Biology, 394, 61–70.
Wang, H.-J., Hsiao, Y.-Y., Chen, Y.-P., Ma, T.-Y., & Tseng, C.-P. (2016). Polarity alteration of a calcium site induces a hydrophobic interaction network and enhances Cel9A endoglucanase thermostability. Applied and Environmental Microbiology, 82, 1662–1674.
Liu, H., Pereira, J. H., Adams, P. D., Sapra, R., Simmons, B. A., & Sale, K. L. (2010). Molecular simulations provide new insights into the role of the accessory immunoglobulin-like domain of Cel9A. FEBS Letters, 584, 3431–3435.
Younesi, F. S., Pazhang, M., Najavand, S., Rahimizadeh, P., Akbarian, M., Mohammadian, M., & Khajeh, K. (2016). Deleting the Ig-like domain of Alicyclobacillus acidocaldarius endoglucanase Cel9A causes a simultaneous increase in the activity and stability. Molecular Biotechnology, 58, 12–21.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.
Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701–1718.
Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447.
Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25, 1656–1676.
Berendsen, H., Grigera, J., & Straatsma, T. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry, 91, 6269–6271.
Berendsen, H. J., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91, 43–56.
Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463–1472.
Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092.
Blau, C., & Grubmuller, H. (2013). g_contacts: Fast contact search in bio-molecular ensemble data. Computer Physics Communications, 184, 2856–2859.
Rabinovich, M., Melnick, M., & Bolobova, A. (2002). The structure and mechanism of action of cellulolytic enzymes. Biochemistry, 67, 850–871.
Sukharnikov, L. O., Cantwell, B. J., Podar, M., & Zhulin, I. B. (2011). Cellulases: Ambiguous nonhomologous enzymes in a genomic perspective. Trends in Biotechnology, 29, 473–479.
Cheng, R., Chen, J., Yu, X., Wang, Y., Wang, S., & Zhang, J. (2013). Recombinant production and characterization of full-length and truncated β-1, 3-glucanase PglA from Paenibacillus sp. S09. BMC Biotechnology, 13, 105.
Kataeva, I. A., Uversky, V. N., Brewer, J. M., Schubot, F., Rose, J. P., Wang, B.-C., & Ljungdahl, L. G. (2004). Interactions between immunoglobulin-like and catalytic modules in Clostridium thermocellum cellulosomal cellobiohydrolase CbhA. Protein Engineering Design and Selection, 17, 759–769.
Han, Q., Liu, N., Robinson, H., Cao, L., Qian, C., Wang, Q., Xie, L., Ding, H., Wang, Q., & Huang, Y. (2013). Biochemical characterization and crystal structure of a GH10 xylanase from termite gut bacteria reveal a novel structural feature and significance of its bacterial Ig-like domain. Biotechnology and Bioengineering, 110, 3093–3103.
Pazhang, M., Mehrnejad, F., Pazhang, Y., Falahati, H., & Chaparzadeh, N. (2016). Effect of sorbitol and glycerol on the stability of trypsin and difference between their stabilization effects in the various solvents. Biotechnology and Applied Biochemistry, 63, 206–213.
Andersen, C. A., Palmer, A. G., Brunak, S., & Rost, B. (2002). Continuum secondary structure captures protein flexibility. Structure, 10, 175–184.
Rashin, A. A., Rashin, A. H., & Jernigan, R. L. (2010). Diversity of function-related conformational changes in proteins: Coordinate uncertainty, fragment rigidity, and stability. Biochemistry, 49, 5683–5704.
Mamonova, T. B., Glyakina, A. V., Galzitskaya, O. V., & Kurnikova, M. G. (2013). Stability and rigidity/flexibility—Two sides of the same coin? Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1834, 854–866.
Van Der Lee, R., Buljan, M., Lang, B., Weatheritt, R. J., Daughdrill, G. W., Dunker, A. K., Fuxreiter, M., Gough, J., Gsponer, J., & Jones, D. T. (2014). Classification of intrinsically disordered regions and proteins. Chemical Reviews, 114, 6589–6631.
Hsu, Y.-H., Burke, J. E., Stephens, D. L., Deems, R. A., Li, S., Asmus, K. M., Woods, V. L., & Dennis, E. A. (2008). Calcium binding rigidifies the C2 domain and the intradomain interaction of GIVA phospholipase A2 as revealed by hydrogen/deuterium exchange mass spectrometry. Journal of Biological Chemistry, 283, 9820–9827.
Chen, A., Li, Y., Nie, J., McNeil, B., Jeffrey, L., Yang, Y., & Bai, Z. (2015). Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods. Enzyme and Microbial Technology, 78, 74–83.
Bonito, C. A., Nunes, J., Leandro, J., Louro, F., Leandro, P., Ventura, F. V., & Guedes, R. C. (2016). Unveiling the pathogenic molecular mechanisms of the most common variant (p.K329E) in medium-chain acyl-CoA dehydrogenase deficiency by in vitro and in silico approaches. Biochemistry, 55, 7086–7098.
Zheng, H., Chruszcz, M., Lasota, P., Lebioda, L., & Minor, W. (2008). Data mining of metal ion environments present in protein structures. Journal of Inorganic Biochemistry, 102, 1765–1776.
Domínguez, D. C., Guragain, M., & Patrauchan, M. (2015). Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium, 57, 151–165.
Kumagai, Y., Kawakami, K., Mukaihara, T., Kimura, M., & Hatanaka, T. (2012). The structural analysis and the role of calcium binding site for thermal stability in mannanase. Biochimie, 94, 2783–2790.
Lee, S., Park, H. I., & Sang, Q.-X. A. (2007). Calcium regulates tertiary structure and enzymatic activity of human endometase/matrilysin-2 and its role in promoting human breast cancer cell invasion. Biochemical Journal, 403, 31–42.
Wojcik, M., & Stec, W. J. (2010). The effect of divalent cations on the catalytic activity of the human plasma 3′-exonuclease. BioMetals, 23, 1113–1121.
Veltman, O. R., Vriend, G., van den Burg, B., Hardy, F., Venema, G., & Eijsink, V. G. (1997). Engineering thermolysin-like proteases whose stability is largely independent of calcium. FEBS Letters, 405, 241–244.
Bodelon, G., Palomino, C., & Fernandez, L. A. (2013). Immunoglobulin domains in Escherichia coli and other enterobacteria: From pathogenesis to applications in antibody technologies. FEMS Microbiology Reviews, 37, 204–250.
Acknowledgements
The authors express their gratitude to the research council of Azarbaijan Shahid Madani University for the financial support during the course of this project.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there are no conflicts of interest.
Rights and permissions
About this article
Cite this article
Pazhang, M., Younesi, F.S., Mehrnejad, F. et al. Ig-like Domain in Endoglucanase Cel9A from Alicyclobacillus acidocaldarius Makes Dependent the Enzyme Stability on Calcium. Mol Biotechnol 60, 698–711 (2018). https://doi.org/10.1007/s12033-018-0105-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12033-018-0105-4


