Skip to main content

Advertisement

Log in

Ig-like Domain in Endoglucanase Cel9A from Alicyclobacillus acidocaldarius Makes Dependent the Enzyme Stability on Calcium

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Endoglucanase Cel9A from Alicyclobacillus acidocaldarius (AaCel9A) has an Ig-like domain and the enzyme stability is dependent to calcium. In this study the effect of calcium on the structure and stability of the wild-type enzyme and the truncated form (the wild-type enzyme without Ig-like domain, AaCel9AΔN) was investigated. Fluorescence quenching results indicated that calcium increased and decreased the rigidity of the wild-type and truncated enzymes, respectively. RMSF results indicated that AaCel9A has two flexible regions (regions A and B) and deleting the Ig-like domain increased the truncated enzyme stability by decreasing the flexibility of region B probably through increasing the hydrogen bonds. Calcium contact map analysis showed that deleting the Ig-like domain decreased the calcium contacting residues and their calcium binding affinities, especially, in region B which has a role in calcium binding site in AaCel9A. Metal depletion and activity recovering as well as stability results showed that the structure and stability of the wild-type and truncated enzymes are completely dependent on and independent of calcium, respectively. Finally, one can conclude that the deletion of Ig-like domain makes AaCel9AΔN independent of calcium via decreasing the flexibility of region B through increasing the hydrogen bonds. This suggests a new role for the Ig-like domain which makes AaCel9A structure dependent on calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

AaCel9A:

Alicyclobacillus acidocaldarius endoglucanase Cel9A

AaCel9AΔN:

AaCel9A without Ig-like domain

CBD:

Carbohydrate binding domain

Ig-like:

Immunoglobulin-like

MD:

Molecular dynamics

RDF:

Radial distribution function

RMSF:

Root-mean-square fluctuation

References

  1. Liao, J. C., Mi, L., Pontrelli, S., & Luo, S. (2016). Fuelling the future: Microbial engineering for the production of sustainable biofuels. Nature Reviews Microbiology, 14, 288–304.

    Article  CAS  PubMed  Google Scholar 

  2. Mussatto, S. I., Dragone, G., Guimarães, P. M., Silva, J. P. A., Carneiro, L. M., Roberto, I. C., Vicente, A., Domingues, L., & Teixeira, J. A. (2010). Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, 28, 817–830.

    Article  CAS  PubMed  Google Scholar 

  3. Lin, C., Shen, Z., & Qin, W. (2017). Characterization of xylanase and cellulase produced by a newly isolated Aspergillus fumigatus N2 and its efficient saccharification of Barley Straw. Applied Biochemistry and Biotechnology, 182, 559–569.

    Article  CAS  PubMed  Google Scholar 

  4. Cao, Y., & Tan, H. (2004). Structural characterization of cellulose with enzymatic treatment. Journal of Molecular Structure, 705, 189–193.

    Article  CAS  Google Scholar 

  5. Bayer, E. A., Chanzy, H., Lamed, R., & Shoham, Y. (1998). Cellulose, cellulases and cellulosomes. Current Opinion in Structural Biology, 8, 548–557.

    Article  CAS  PubMed  Google Scholar 

  6. Knowles, J., Lehtovaara, P., & Teeri, T. (1987). Cellulase families and their genes. Trends in Biotechnology, 5, 255–261.

    Article  CAS  Google Scholar 

  7. Zhang, Y.-H. P., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, 24, 452–481.

    Article  CAS  Google Scholar 

  8. Wilson, D. B., & Irwin, D. C. (1999). Genetics and properties of cellulases. In G. T. Tsao, et al. (Eds.), Recent progress in bioconversion of lignocellulosics. Advances in biochemical engineering/biotechnology (Vol. 65). Berlin, Heidelberg: Springer.

    Google Scholar 

  9. Berka, R. M., Grigoriev, I. V., Otillar, R., Salamov, A., Grimwood, J., Reid, I., Ishmael, N., John, T., Darmond, C., & Moisan, M.-C. (2011). Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nature Biotechnology, 29, 922–927.

    Article  CAS  PubMed  Google Scholar 

  10. Bhalla, A., Bansal, N., Kumar, S., Bischoff, K. M., & Sani, R. K. (2013). Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresource Technology, 128, 751–759.

    Article  CAS  PubMed  Google Scholar 

  11. Dick, M., Weiergräber, O. H., Classen, T., Bisterfeld, C., Bramski, J., Gohlke, H., & Pietruszka, J. (2016). Trading off stability against activity in extremophilic aldolases. Scientific Reports, 6, 17908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim, S. J., Joo, J. E., Jeon, S. D., Hyeon, J. E., Kim, S. W., Um, Y. S., & Han, S. O. (2016). Enhanced thermostability of mesophilic endoglucanase Z with a high catalytic activity at active temperatures. International Journal of Biological Macromolecules, 86, 269–276.

    Article  CAS  PubMed  Google Scholar 

  13. Moran-Mirabal, J. M., Bolewski, J. C., & Walker, L. P. (2011). Reversibility and binding kinetics of Thermobifida fusca cellulases studied through fluorescence recovery after photobleaching microscopy. Biophysical Chemistry, 155, 20–28.

    Article  CAS  PubMed  Google Scholar 

  14. Eckert, K., Zielinski, F., Lo Leggio, L., & Schneider, E. (2002). Gene cloning, sequencing, and characterization of a family 9 endoglucanase (CelA) with an unusual pattern of activity from the thermoacidophile Alicyclobacillus acidocaldarius ATCC27009. Applied Microbiology and Biotechnology, 60, 428–436.

    Article  CAS  PubMed  Google Scholar 

  15. Pereira, J. H., Sapra, R., Volponi, J. V., Kozina, C. L., Simmons, B., & Adams, P. D. (2009). Structure of endoglucanase Cel9A from the thermoacidophilic Alicyclobacillus acidocaldarius. Acta Crystallographica Section D: Biological Crystallography, 65, 744–750.

    Article  CAS  Google Scholar 

  16. Eckert, K., Vigouroux, A., Leggio, L. L., & Moréra, S. (2009). Crystal structures of A. acidocaldarius endoglucanase Cel9A in complex with cello-oligosaccharides: Strong -1 and -2 subsites mimic cellobiohydrolase activity. Journal of Molecular Biology, 394, 61–70.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, H.-J., Hsiao, Y.-Y., Chen, Y.-P., Ma, T.-Y., & Tseng, C.-P. (2016). Polarity alteration of a calcium site induces a hydrophobic interaction network and enhances Cel9A endoglucanase thermostability. Applied and Environmental Microbiology, 82, 1662–1674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, H., Pereira, J. H., Adams, P. D., Sapra, R., Simmons, B. A., & Sale, K. L. (2010). Molecular simulations provide new insights into the role of the accessory immunoglobulin-like domain of Cel9A. FEBS Letters, 584, 3431–3435.

    Article  CAS  PubMed  Google Scholar 

  19. Younesi, F. S., Pazhang, M., Najavand, S., Rahimizadeh, P., Akbarian, M., Mohammadian, M., & Khajeh, K. (2016). Deleting the Ig-like domain of Alicyclobacillus acidocaldarius endoglucanase Cel9A causes a simultaneous increase in the activity and stability. Molecular Biotechnology, 58, 12–21.

    Article  CAS  PubMed  Google Scholar 

  20. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  PubMed  Google Scholar 

  22. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701–1718.

    Article  CAS  Google Scholar 

  23. Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447.

    Article  CAS  PubMed  Google Scholar 

  24. Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25, 1656–1676.

    Article  CAS  PubMed  Google Scholar 

  25. Berendsen, H., Grigera, J., & Straatsma, T. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry, 91, 6269–6271.

    Article  CAS  Google Scholar 

  26. Berendsen, H. J., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91, 43–56.

    Article  CAS  Google Scholar 

  27. Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463–1472.

    Article  CAS  Google Scholar 

  28. Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092.

    Article  CAS  Google Scholar 

  29. Blau, C., & Grubmuller, H. (2013). g_contacts: Fast contact search in bio-molecular ensemble data. Computer Physics Communications, 184, 2856–2859.

    Article  CAS  Google Scholar 

  30. Rabinovich, M., Melnick, M., & Bolobova, A. (2002). The structure and mechanism of action of cellulolytic enzymes. Biochemistry, 67, 850–871.

    CAS  PubMed  Google Scholar 

  31. Sukharnikov, L. O., Cantwell, B. J., Podar, M., & Zhulin, I. B. (2011). Cellulases: Ambiguous nonhomologous enzymes in a genomic perspective. Trends in Biotechnology, 29, 473–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheng, R., Chen, J., Yu, X., Wang, Y., Wang, S., & Zhang, J. (2013). Recombinant production and characterization of full-length and truncated β-1, 3-glucanase PglA from Paenibacillus sp. S09. BMC Biotechnology, 13, 105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kataeva, I. A., Uversky, V. N., Brewer, J. M., Schubot, F., Rose, J. P., Wang, B.-C., & Ljungdahl, L. G. (2004). Interactions between immunoglobulin-like and catalytic modules in Clostridium thermocellum cellulosomal cellobiohydrolase CbhA. Protein Engineering Design and Selection, 17, 759–769.

    Article  CAS  Google Scholar 

  34. Han, Q., Liu, N., Robinson, H., Cao, L., Qian, C., Wang, Q., Xie, L., Ding, H., Wang, Q., & Huang, Y. (2013). Biochemical characterization and crystal structure of a GH10 xylanase from termite gut bacteria reveal a novel structural feature and significance of its bacterial Ig-like domain. Biotechnology and Bioengineering, 110, 3093–3103.

    Article  CAS  PubMed  Google Scholar 

  35. Pazhang, M., Mehrnejad, F., Pazhang, Y., Falahati, H., & Chaparzadeh, N. (2016). Effect of sorbitol and glycerol on the stability of trypsin and difference between their stabilization effects in the various solvents. Biotechnology and Applied Biochemistry, 63, 206–213.

    Article  CAS  PubMed  Google Scholar 

  36. Andersen, C. A., Palmer, A. G., Brunak, S., & Rost, B. (2002). Continuum secondary structure captures protein flexibility. Structure, 10, 175–184.

    Article  CAS  PubMed  Google Scholar 

  37. Rashin, A. A., Rashin, A. H., & Jernigan, R. L. (2010). Diversity of function-related conformational changes in proteins: Coordinate uncertainty, fragment rigidity, and stability. Biochemistry, 49, 5683–5704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mamonova, T. B., Glyakina, A. V., Galzitskaya, O. V., & Kurnikova, M. G. (2013). Stability and rigidity/flexibility—Two sides of the same coin? Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1834, 854–866.

    Article  CAS  Google Scholar 

  39. Van Der Lee, R., Buljan, M., Lang, B., Weatheritt, R. J., Daughdrill, G. W., Dunker, A. K., Fuxreiter, M., Gough, J., Gsponer, J., & Jones, D. T. (2014). Classification of intrinsically disordered regions and proteins. Chemical Reviews, 114, 6589–6631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hsu, Y.-H., Burke, J. E., Stephens, D. L., Deems, R. A., Li, S., Asmus, K. M., Woods, V. L., & Dennis, E. A. (2008). Calcium binding rigidifies the C2 domain and the intradomain interaction of GIVA phospholipase A2 as revealed by hydrogen/deuterium exchange mass spectrometry. Journal of Biological Chemistry, 283, 9820–9827.

    Article  CAS  PubMed  Google Scholar 

  41. Chen, A., Li, Y., Nie, J., McNeil, B., Jeffrey, L., Yang, Y., & Bai, Z. (2015). Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods. Enzyme and Microbial Technology, 78, 74–83.

    Article  CAS  PubMed  Google Scholar 

  42. Bonito, C. A., Nunes, J., Leandro, J., Louro, F., Leandro, P., Ventura, F. V., & Guedes, R. C. (2016). Unveiling the pathogenic molecular mechanisms of the most common variant (p.K329E) in medium-chain acyl-CoA dehydrogenase deficiency by in vitro and in silico approaches. Biochemistry, 55, 7086–7098.

    Article  CAS  PubMed  Google Scholar 

  43. Zheng, H., Chruszcz, M., Lasota, P., Lebioda, L., & Minor, W. (2008). Data mining of metal ion environments present in protein structures. Journal of Inorganic Biochemistry, 102, 1765–1776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Domínguez, D. C., Guragain, M., & Patrauchan, M. (2015). Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium, 57, 151–165.

    Article  CAS  PubMed  Google Scholar 

  45. Kumagai, Y., Kawakami, K., Mukaihara, T., Kimura, M., & Hatanaka, T. (2012). The structural analysis and the role of calcium binding site for thermal stability in mannanase. Biochimie, 94, 2783–2790.

    Article  CAS  PubMed  Google Scholar 

  46. Lee, S., Park, H. I., & Sang, Q.-X. A. (2007). Calcium regulates tertiary structure and enzymatic activity of human endometase/matrilysin-2 and its role in promoting human breast cancer cell invasion. Biochemical Journal, 403, 31–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wojcik, M., & Stec, W. J. (2010). The effect of divalent cations on the catalytic activity of the human plasma 3′-exonuclease. BioMetals, 23, 1113–1121.

    Article  CAS  PubMed  Google Scholar 

  48. Veltman, O. R., Vriend, G., van den Burg, B., Hardy, F., Venema, G., & Eijsink, V. G. (1997). Engineering thermolysin-like proteases whose stability is largely independent of calcium. FEBS Letters, 405, 241–244.

    Article  CAS  PubMed  Google Scholar 

  49. Bodelon, G., Palomino, C., & Fernandez, L. A. (2013). Immunoglobulin domains in Escherichia coli and other enterobacteria: From pathogenesis to applications in antibody technologies. FEMS Microbiology Reviews, 37, 204–250.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the research council of Azarbaijan Shahid Madani University for the financial support during the course of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Pazhang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazhang, M., Younesi, F.S., Mehrnejad, F. et al. Ig-like Domain in Endoglucanase Cel9A from Alicyclobacillus acidocaldarius Makes Dependent the Enzyme Stability on Calcium. Mol Biotechnol 60, 698–711 (2018). https://doi.org/10.1007/s12033-018-0105-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0105-4

Keywords

Profiles

  1. Faramarz Mehrnejad