Skip to main content

Advertisement

Log in

The Development of Bacterial Carboxylesterase Biological Recognition Elements for Cocaine Detection

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Enzyme recognition element-based biosensors are very attractive for biosensor application due to a variety of measurable reaction products arising from a catalytic process. In this study, biosensor recognition elements have been developed via engineer bacterial enzymes (carboxylesterases (CEs)) which will used for narcotic detection because of their role in narcotics metabolism. The modification (insertion of cys-tag) allows the enzyme to bind into a transducer surface of a biosensor which will translate the reaction product into the detection system. The results demonstrate the successful isolation, cloning, expression, and purification of recombinant (pnbA1 and pnbA2), and engineered (pnbA1-cys and pnbA2-cys) bacterial carboxylesterases. Enzyme capability to hydrolyse cocaine into benzoylecgonine and methanol was quantified using HPLC. Both enzymes showed broad maximal activity between pH (8.0, 8.5, and 9.0), PnbA1 temperature stability ranging between (25 and 45 °C); however, PnbA2 stability range was (25–40 °C). Insertion of cys-tag at the N-terminal of the enzyme did not limit entrance to the active site which is located at the base of a cavity with dimensions 20 by 13 by 18 Å, and did not prevent substrate hydrolysis. Bacterial carboxylesterases pnbA1 and pnbA2 mimic hCE1 and not hCE2 in its reaction pathways hydrolysing cocaine into benzoylecgonine and methanol rather than ecgonine methyl ester and benzoic acid. These results are the first experimental evidence confirming the capability of bacterial carboxylesterase to hydrolyse cocaine into its main metabolites, therefore opening up the possibility to use these enzymes in numerous biotechnological applications in addition to a cocaine biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bencharit, S., Morton, C. L., Howard-Williams, E. L., Danks, M. K., Potter, P. M., & Redinbo, M. R. (2002). Structural insights into CPT-11 activation by mammalian carboxylesterases. Natural Structural Biology, 9, 337–342.

    Article  CAS  Google Scholar 

  2. Meghji, K., Ward, O. P., & Araujo, A. (1990). Production, purification, and properties of extracellular carboxyl esterases from Bacillus subtilis NRRL 365. American Society for Microbiology, 56, 3735–3740.

    CAS  Google Scholar 

  3. Ileperuma, N. R., Marshall, S. D. G., Squire, C. J., Baker, H. M., Oakeshott, J. G., Russell, R. J., Plummer, K. M., Newcomb, R. D., & Baker, E. N. (2007) High-resolution crystal structure of plant carboxylesterases AeCXE1, from Actinidia eriantha, and its complex with a high-affinity inhibitor paraxon. Biochemistry 46, 1851–1859.

    Article  CAS  PubMed  Google Scholar 

  4. Sayali, K., Patil, S., & Surekha, S. (2013). Microbial esterases: An overview. International Journal of Current Microbiology and Applied Sciences, 2, 135–146.

    Google Scholar 

  5. Xie, G., Liu, M., Zhu, H., & Lei, B. (2008). Esterase SeE of Streptococcus equi ssp. equi is a novel nonspecific carboxylic ester hydrolase. FEMS Microbiology Letters, 289, 181–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lopes, D. B., Fraga, L. P., Fleuri, L. F., & Macedo, G. A. (2011). Lipases and Esterases—to what extent this classification be applied accurately. Food Science and Technology, 31, 608–613.

    Article  Google Scholar 

  7. Montella, I. R., Schama, R., & Valle, D. (2012). The classification of esterases: An important gene family involved in insecticide resistance—a review. Memórias do Instituto Oswaldo Cruz, 107, 437–449.

    Article  CAS  PubMed  Google Scholar 

  8. Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., et al. (1992). The alpha/beta hydrolase fold. Protein Engineering, 5, 197–211.

    Article  CAS  PubMed  Google Scholar 

  9. Nardini, M., & Dijkstra, B. W. (1999). a/ß hydrolase fold enzymes: The family keeps growing. Current Opinion in Structural Biology, 9, 732–737.

    Article  CAS  PubMed  Google Scholar 

  10. Pindel, E. V., Kedishvili, N. Y., Abraham, T. L., Brzezinski, M. R., Zhang, A., Dean, R. A., et al. (1997). Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. Journal of Biological Chemistry, 272, 14769–14775.

    Article  CAS  PubMed  Google Scholar 

  11. Weirdl, M., Morton, C. L., Nguyen, N. K., Redinbo, M. R., & Potter, P. M. (2004). Molecular modeling of CPT-11 metabolism by carboxylesterases (CEs) use of pnb CE as a model. Biochemistry, 43, 1874–1882.

    Article  CAS  Google Scholar 

  12. Wheelock, C. E., Phillips, B. M., Anderson, B. S., Miller, J. L., Miller, M. J., et al. (2008). Application of carboxylesterase activity in environmental monitoring and toxicity identification protocol (TIEs). Reviews of Environmental Contamination and Toxicology, 195, 117–178.

    CAS  PubMed  Google Scholar 

  13. Singh, B. (2014). Review on microbial carboxylesterase: General properties and role in organophosphate pesticide degradation. Biochemistry and Molecular Biology, 2, 1–6.

    Article  Google Scholar 

  14. Ahmad, S., & Forgash, A. J. (1976). Nonoxidative enzymes in the metabolism of insecticides. Drug Metabolism Reviews, 5, 141–164.

    Article  CAS  PubMed  Google Scholar 

  15. Leinweber, F. J. (1987). Possible physiological roles of carboxyl ester hydrolases. Drug Metabolism Reviews, 18, 379–439.

    Article  CAS  PubMed  Google Scholar 

  16. Diczfalusy, M. A., Bjorkkem, I., Einarsson, C., Hillebrant, C. G., & Alexson, S. E. (2001). Characterization of enzymes involved in formation of ethyl esters of long-chain fatty acids. The Journal of Lipid Research, 42, 1025–1032.

    CAS  PubMed  Google Scholar 

  17. Dolinsky, V. W., Sipione, S., Lehner, R., & Vance, D. E. (2001). The cloning and expression of murine triacylglycerol hydrolase cDNA and the structure of the corresponding gene. Biochimica et Biophysica Acta, 1532, 162–172.

    Article  CAS  PubMed  Google Scholar 

  18. Becker, A., Bottcher, A., Lackner, K. J., Fehringer, P., Notka, F., & Aslandis, C. (1994). Purification, cloning and expression of a human enzyme with acyl coenzyme A: Cholesterol acyltransferase activity, which is identical to liver carboxylesterase. Arteriosclerosis and Thrombosis, 14, 1346–1355.

    Article  CAS  PubMed  Google Scholar 

  19. Jatlow, P. I. (1987). Drug of abuse profile: Cocaine. Clinical Chemistry, 33, 66B–71B.

    CAS  PubMed  Google Scholar 

  20. Bailey, D. N. (1994). Studies of cocaethylene (Ethylcocaine) formation by human tissues in vitro. Journal of Analytical Toxicology, 18, 13–15.

    Article  CAS  PubMed  Google Scholar 

  21. Baingana, F., al’Absi, M., Becker, A. E., & Pringle, B. (2015). Global research challenges and opportunities for mental health and substance-use disorders. Nature, 527, S172–S177.

    Article  CAS  PubMed  Google Scholar 

  22. Holmes, D. (2015). Addition: 4 big questions. Nature, 522, S63.

    Article  CAS  PubMed  Google Scholar 

  23. Jaeger, K. E., & Eggert, T. (2002). Lipases for biotechnology. Current Opinion in Biotechnology, 13, 390–397.

    Article  CAS  PubMed  Google Scholar 

  24. Ewisa, H. E., Abdelalb, A. T., & Lu, C.-D. (2004). Molecular cloning and characterization of two thermostable carboxyl esterases from Geobacillus stearothermophilus. Gene, 329, 187–195.

    Article  CAS  Google Scholar 

  25. Bornscheuer, U. T. (2002). Microbial carboxyl esterases: Classification, properties, and application in biocatalysis. FEMS Microbiology Reviews, 26, 73–818.

    Article  CAS  PubMed  Google Scholar 

  26. Zock, J., Cantwell, C., Swartling, J., Hodges, R., Pohl, T., Sutton, K., Rosteck, P. Jr., McGilvray, D., & Queener, S. (1994). The Bacillus subtilis pnbA gene encoding pnitrobenzyl esterase: Cloning, sequence and high-level expression in Escherichia coli. Gene, 151, 37–43.

    Article  CAS  PubMed  Google Scholar 

  27. Quax, W. J., & Broekhuizen, C. P. (1994). Development of a new Bacillus carboxyl esterase for use in the resolution of chiral drugs. Applied Microbiology and Biotechnology, 41, 425–431.

    CAS  PubMed  Google Scholar 

  28. Moore, J. C., & Arnold, F. H. (1996). Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nature Biotechnology, 14, 458–467.

    Article  CAS  PubMed  Google Scholar 

  29. Wizard®genomic DNA purification kit. Promega. Technical manual. USA.

  30. PCR master mix, Taq DNA Polymerase. Promega. USA.

  31. Oakeshott, J. G., Claudianos, C., Russell, R. J., & Robin, G. C. (1999). Carboxyl/cholinesterases: A case study of the evolution of a successful multigene family. BioEssays, 21, 1031–1042.

    Article  CAS  PubMed  Google Scholar 

  32. Redinbo, M. R., Bencharit, S., & Potter, P. M. (2003). Human carboxylesterase 1: From drug metabolism to drug discovery. Biochemical Society Transactions, 31, 620–624.

    Article  CAS  PubMed  Google Scholar 

  33. Pindel, E. V., Kedishvili, N. Y., Abraham, T. L., Brzezinski, M. R., Zhang, J., Dean, R. A., et al. (1997). Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. Journal of Biological Chemistry, 272, 14769–14775.

    Article  CAS  PubMed  Google Scholar 

  34. Imai, T. (2006). Human carboxylesterase isozymes: Catalytic properties and rational drug design. Drug Metabolism and Pharmacokinetics, 21, 173–185.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhad A. Mustafa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, S.A. The Development of Bacterial Carboxylesterase Biological Recognition Elements for Cocaine Detection. Mol Biotechnol 60, 601–607 (2018). https://doi.org/10.1007/s12033-018-0098-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0098-z

Keywords