Abstract
Previously, metalloproteinase was isolated and identified from Trichomonas vaginalis, belonging to the aminopeptidase P-like metalloproteinase subfamily A/B, family M24 of clan MG, named TvMP50. The native and recombinant TvMP50 showed proteolytic activity, determined by gelatin zymogram, and a 50 kDa band, suggesting that TvMP50 is a monomeric active enzyme. This was an unexpected finding since other Xaa-Pro aminopeptidases/prolidases are active as a biological unit formed by dimers/tetramers. In this study, the evolutionary history of TvMP50 and the preliminary crystal structure of the recombinant enzyme determined at 3.4 Å resolution is reported. TvMP50 was shown to be a type of putative, eukaryotic, monomeric aminopeptidase P, and the crystallographic coordinates showed a monomer on a “pseudo-homodimer” array on the asymmetric unit that resembles the quaternary structure of the M24B dimeric family and suggests a homodimeric aminopeptidase P-like enzyme as a likely ancestor. Interestingly, TvMP50 had a modified N-terminal region compared with other Xaa-Pro aminopeptidases/prolidases with three-dimensional structures; however, the formation of the standard dimer is structurally unstable in aqueous solution, and a comparably reduced number of hydrogen bridges and lack of saline bridges were found between subunits A/B, which could explain why TvMP50 portrays monomeric functionality. Additionally, we found that the Parabasalia group contains two protein lineages with a “pita bread” fold; the ancestral monomeric group 1 was probably derived from an ancestral dimeric aminopeptidase P-type enzyme, and group 2 has a probable dimeric kind of ancestral eukaryotic prolidase lineage. The implications of such hypotheses are also presented.







Similar content being viewed by others
References
Adams PD, Afonine PV, Bunkóczi G, Chen VB, Echols N, Headd JJ, Hung L-W, Jain S, Kapral GJ, Kunstleve RWG (2011) The Phenix software for automated determination of macromolecular structures Methods 55: 94–106
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool J Mol Biol 215: 403–410
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs Nucleic Acids Res 25: 3389–3402
Anderson SM, Wawrzak Z, Skarina T, Onopriyenko O, Kwon K, Anderson WF, Savchenko A Structure of a putative aminopeptidase P from Bacillus anthracis
Baugh L, Phan I, Begley DW, Clifton MC, Armour B, Dranow DM, Taylor BM, Muruthi MM, Abendroth J, Fairman JW (2015) Increasing the structural coverage of tuberculosis drug targets Tuberculosis 95: 142–148
Bazan J, Weaver L, Roderick S, Huber R., Matthews B (1994) Sequence and structure comparison suggest that methionine aminopeptidase, prolidase, aminopeptidase P, and creatinase share a common fold Proc Natl Acad Sci 91: 2473–2477
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank Nucleic Acids Res 28: 235–242
Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UCM, Besteiro S (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis Science 315: 207–212
Cottrell GS, Hooper NM, Turner AJ (2000) Cloning, expression, and characterization of human cytosolic aminopeptidase P: a single manganese (II)-dependent enzyme. Biochemistry 39: 15121–15128
Chandonia J-M, Fox NK, Brenner SE (2017) SCOPe: manual curation and artifact removal in the structural classification of proteins–extended database J Mol Biol 429: 348–355
Drinkwater N, Sivaraman KK, Bamert RS, Rut W, Mohamed K, Vinh NB, Scammells PJ, Drag M, McGowan S (2016) Structure and substrate fingerprint of aminopeptidase P from Plasmodium falciparum Biochem J 473: 3189–3204
Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot Acta Crystallographica Sect D 66: 486–501
Figueroa-Angulo EE, Rendón-Gandarilla FJ, Puente-Rivera J, Calla-Choque JS, Cárdenas-Guerra RE, Ortega-López J, Quintas-Granados LI, Alvarez-Sánchez ME, Arroyo R (2012) The effects of environmental factors on the virulence of Trichomonas vaginalis Microbes Infect 14: 1411–1427
Geurts N, Opdenakker G, Van den Steen PE (2012) Matrix metalloproteinases as therapeutic targets in protozoan parasitic infections. Pharmacol Ther 133: 257–279
Ghosh M, Grunden AM, Dunn DM, Weiss R, Adams MW (1998) Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 180 4781–4789
Gouy M, Guindon S, Gascuel O (2009) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27: 221–224
Graham SC, Bond CS, Freeman HC, Guss JM (2005) Structural and functional implications of metal ion selection in aminopeptidase P, a metalloprotease with a dinuclear metal center Biochemistry 44: 13820–13836
Haffner A, Guilavogui AZ, Tischendorf FW, Brattig NW (1998) Onchocerca volvulus: microfilariae secrete elastinolytic and males nonelastinolytic matrix-degrading serine and metalloproteases. Exp Parasitol 90: 26–33
Hooper NM, Hryszko J, Oppong SY, Turner AJ (1992) Inhibition by converting enzyme inhibitors of pig kidney aminopeptidase P. Hypertension 19: 281–285
Hooper NM, Keen J, Pappin D, Turner AJ (1987) Pig kidney angiotensin converting enzyme. Purification and characterization of amphipathic and hydrophilic forms of the enzyme establishes C-terminal anchorage to the plasma membrane. Biochem J 247: 85–93
Iyer S, La-Borde PJ, Payne KA, Parsons MR, Turner AJ, Isaac RE, Acharya KR (2015) Crystal structure of X-prolyl aminopeptidase from Caenorhabditis elegans: a cytosolic enzyme with a di-nuclear active site FEBS Open Bio 5: 292–302
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface Nucleic Acids Res 36: W5–W9
Jones TA, Zou J-Y, Cowan St, Kjeldgaard M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallographica Sect A 47: 110–119
Kabsch W (2010) Integration, scaling, space-group assignment and post-refinement Acta Crystallographica Sect D 66: 125–132
Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state J Mol Biol 372: 774–797
Lowther WT, Matthews BW (2002) Metalloaminopeptidases: common functional themes in disparate structural surroundings Chem Rev 102: 4581–4608
Lowther WT, Orville AM, Madden DT, Lim S, Rich DH, Matthews BW (1999) Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis Biochemistry 38: 7678–7688
Lloyd GS, Hryszko J, Hooper NM, Turner AJ (1996) Inhibition and metal ion activation of pig kidney aminopeptidase P: dependence on nature of substrate Biochem Pharmacol 52: 229–236
Maher MJ, Ghosh M, Grunden AM, Menon AL, Adams MW, Freeman HC, Guss JM (2004) Structure of the prolidase from Pyrococcus furiosus. Biochemistry 43: 2771–2783
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI (2014) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43: D222–D226
Mueller U, Niesen FH, Roske Y, Goetz F, Behlke J, Buessow K, Heinemann U Crystal structure of human prolidase: the molecular basis of Pd disease
Myara I, Cosson C, Moatti N, Lemonnier A (1994) Human kidney prolidase—purification, preincubation properties and immunological reactivity. Int J Biochem 26: 207–214
Nagase, H. (2001). Metalloproteases. In: Current Protocols in Protein Science. Wiley, Hoboken
Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, Stevens G, Gottlieb S, Kiarie J, Temmerman M (2015) Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS ONE 10: e0143304
Osipiuk J, Maltseva N, Shatsman S, Anderson WF, Joachimiak A (2014) Proline aminopeptidase P II from Yersinia pestis.
Overall C, Kleifeld O (2006) Towards third generation matrix metalloproteinase inhibitors for cancer therapy. Br J Cancer 94: 941–946
Puente-Rivera J, Villalpando JL, Villalobos-Osnaya A, Vázquez-Carrillo LI, León-Ávila G, Ponce-Regalado MD, López-Camarillo C, Elizalde-Contreras JM, Ruiz-May E, Arroyo R (2017) The 50 kDa metalloproteinase TvMP50 is a zinc-mediated Trichomonas vaginalis virulence factor. Mol Biochem Parasitol 217: 32–41
Quintas-Granados LI, Villalpando JL, Vázquez-Carrillo LI, Arroyo R, Mendoza-Hernández G, Álvarez-Sánchez ME (2013) TvMP50 is an immunogenic metalloproteinase during male trichomoniasis. Mol Cell Proteom 12: 1953–1964
Trenholme KR, Brown KL, Skinner-Adams CS, Stack T, Lowther C, To J, Robinson JW, Donnelly MM, Dalton SP, Gardiner JLD (2010) Aminopeptidases of malaria parasites: new targets for chemotherapy. Infect Disord Drug Targets (Formerly Current Drug Targets-Infectious Disorders) 10: 217–225
Ragheb D, Bompiani K, Dalal S, Klemba M (2009) Evidence for catalytic roles for Plasmodium falciparum aminopeptidase P in the food vacuole and cytosol. J Biol Chem 284: 24806–24815
Rawlings ND (2009), A large and accurate collection of peptidase cleavages in the MEROPS database. Database 2009. https://doi.org/10.1093/database/bap015
Rawlings ND, Barrett AJ, Finn R (2015) Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 44: D343–D350
Roderick SL, Matthews BW (1993) Structure of the cobalt-dependent methionine aminopeptidase from Escherichia coli: a new type of proteolytic enzyme. Biochemistry 32: 3907–3912
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7: 539
Sowmya G, Breen EJ, Ranganathan S (2015) Linking structural features of protein complexes and biological function. Protein Sci 24: 1486–1494
Stressler T, Eisele T, Schlayer M, Fischer L (2012) Production, active staining and gas chromatography assay analysis of recombinant aminopeptidase P from Lactococcus lactis ssp. lactis DSM 20481. AMB Express 2: 39
Weaver J, Watts T, Li P, Rye HS (2014) Structural basis of substrate selectivity of E. coli prolidase. PLoS ONE 9: e111531
Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A (2011) Overview of the CCP4 suite and current developments. Acta Crystallographica Sect D 67: 235–242
Yang M, Zheng J, Jia H, Song M (2016) Functional characterization of X-prolyl aminopeptidase from Toxoplasma gondii. Parasitology 143: 1443–1449
Yoshimoto T, Tone H, Honda T, Osatomi R, Kobayashi R, Tsuru D (1989) Sequencing and high expression of aminopeptidase P gene from Escherichia coli HB101. J Biochem 105: 412–416
Zhang Y, Young-An B, Hong-Ying Z, Yoon K, Guo-Bin C (2016) Functionally expression of metalloproteinase in Taenia solium metacestode and its evaluation for serodiagnosis of cysticercosis. Iran J Parasitol 11: 35
Zhanhua C, Gan JGK (2005) Protein subunit interfaces: heterodimers versus homodimers. Bioinformation 1: 28
Acknowledgements
This work was supported by UACM and a Grant from CONACYT (83808) Mexico (to M.E.A.S.). J.P.R. was supported by postdoctoral Grant 291113 from CONACYT Mexico. We appreciate the technical assistance of Brenda Herrera Villalobos. We also thank Sonia Rojas for her technical assistance during enzyme crystallization.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest.
Rights and permissions
About this article
Cite this article
Arreola, R., Villalpando, J.L., Puente-Rivera, J. et al. Trichomonas vaginalis metalloproteinase TvMP50 is a monomeric Aminopeptidase P-like enzyme. Mol Biotechnol 60, 563–575 (2018). https://doi.org/10.1007/s12033-018-0097-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12033-018-0097-0

