Haloquadratum walsbyi Yields a Versatile, NAD+/NADP+ Dual Affinity, Thermostable, Alcohol Dehydrogenase (HwADH)

Abstract

This study presents the first example of an alcohol dehydrogenase (ADH) from the halophilic archaeum Haloquadratum walsbyi (HwADH). A hexahistidine-tagged recombinant HwADH was heterologously overexpressed in Haloferax volcanii. HwADH was purified in one step and was found to be thermophilic with optimal activity at 65 °C. HwADH was active in the presence of 10% (v/v) organic solvent. The enzyme displayed dual cofactor specificity and a broad substrate scope, and maximum activity was detected with benzyl alcohol and 2-phenyl-1-propanol. HwADH accepted aromatic ketones, acetophenone and phenylacetone as substrates. The enzyme also accepted cyclohexanol and aromatic secondary alcohols, 1-phenylethanol and 4-phenyl-2-butanol. H. walsbyi may offer an excellent alternative to other archaeal sources to expand the toolbox of halophilic biocatalysts.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ACN:

Acetonitrile

ADH:

Alcohol dehydrogenase

IMAC:

Immobilised metal-affinity chromatography

iPrOH:

Isopropanol

SDS–PAGE:

Sodium dodecyl sulphate–polyacrylamide gel electrophoresis

EtOH:

Ethanol

BzOH:

Benzyl alcohol

CycOH:

Cyclohexanol

1-PheOH:

1-Phenylethanol

(S)-1-PheOH:

(S)-1-phenylethanol

(R)-1-PheOH:

(R)-1-phenylethanol

2-Phe-1-Prop:

2-Phenyl-1-propanol

References

  1. 1.

    Allers, T., Barak, S., Liddell, S., Wardell, K., & Mevarech, M. (2010). Improved strains and plasmid vectors for conditional overexpression of His-tagged proteins in Haloferax volcanii. Appl. Environ. Microbiol., 76, 1759–1769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Alsafadi, D., & Paradisi, F. (2013). Effect of organic solvents on the activity and stability of halophilic alcohol dehydrogenase (ADH2) from Haloferax volcanii. Extremophiles, 17, 115–122.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Alsafadi, D., & Paradisi, F. (2014). Covalent immobilization of alcohol dehydrogenase (ADH2) from Haloferax volcanii: how to maximize activity and optimize performance of halophilic enzymes. Mol. Biotechnol., 56, 240–247.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Alsafadi, D., Alsalman, S., & Paradisi, F. (2017). Extreme halophilic alcohol dehydrogenase mediated highly efficient syntheses of enantiopure aromatic alcohols. Org. Biomol. Chem., 15, 9169–9175.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Becker, E. A., et al. (2014). Phylogenetically driven sequencing of extremely halophilic archaea reveals strategies for static and dynamic osmo-response. PLoS Genet., 10(11), e1004784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Bolhuis, H., et al. (2006). The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genom., 7, 169.

    Article  CAS  Google Scholar 

  7. 7.

    Borowitzka, M. A., & Siva, C. J. (2007). The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J. Appl. Phycol., 19, 567–590.

    Article  Google Scholar 

  8. 8.

    Burns, D. G., Camakaris, H. M., Janssen, P. H., & Dyall-Smith, M. L. (2004). Cultivation of Walsby’s square haloarchaeon. FEMS Microbiol. Lett., 238, 469–473.

    CAS  PubMed  Google Scholar 

  9. 9.

    Cao, Y., Liao, L., Xu, X. W., Oren, A., Wang, C., Zhu, X. F., et al. (2008). Characterization of alcohol dehydrogenase from the haloalkaliphilic archaeon Natronomonas pharaonis. Extremophiles, 12, 471–476.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Cassidy, J., Bruen, L., Rosini, E., Molla, G., Pollegioni, L., & Paradisi, F. (2017). Engineering substrate promiscuity in halophilic alcohol dehydrogenase (HvADH2) by in silico design. PLoS ONE, 12(11), e0187482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Chellapandi, P., & Balachandramohan, J. (2011). Molecular evolution-directed approach for designing archaeal formyltetrahydrofolate ligase. Turk. J. Biochem., 36, 122–135.

    CAS  Google Scholar 

  12. 12.

    Cuebas-Irizzarry, M. F., Irizarry-Caro, R. A., López-Morales, C., Badillo-Rivera, K. M., Rodríguez-Minguela, C. M., & Montalvo-Rodríguez, R. (2017). Cloning and molecular characterization of an alpha-glucosidase (MalH) from the halophilic archaeon Haloquadratum walsbyi. Life, 7, 46.

    Article  Google Scholar 

  13. 13.

    Fu, H. Y., Chang, Y. N., Jheng, M. J., & Yang, C. S. (2012). Ser(262) determines the chloride-dependent colour tuning of a new halorhodopsin from Haloquadratum walsbyi. Biosci. Rep., 32, 501–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Galletti, P., Emer, E., Gucciardo, G., Quintavalla, A., Pori, M., & Giacomini, D. (2010). Chemoenzymatic synthesis of (2S)-2-arylpropanols through a dynamic kinetic resolution of 2-arylpropanals with alcohol dehydrogenases. Org. Biomol. Chem., 8, 4117–4123.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Hartman, A. L., et al. (2010). The complete genome sequence of Haloferax volcanii DS2, a model archaeon. PLoS ONE, 5, e9605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Kuipers, R. K., et al. (2009). Correlated mutation analyses on super-family alignments reveal functionally important residues. Proteins, 76, 608–616.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Large, A., Stamme, C., Lange, C., Duan, Z., Allers, T., Soppa, J., et al. (2007). Characterization of a tightly controlled promoter of the halophilic archaeon Haloferax volcanii and its use in the analysis of the essential cct1 gene. Mol. Microbiol., 66, 1092–1106.

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Liliensiek, A. K., Cassidy, J., Gucciardo, G., Whitely, C., & Paradisi, F. (2013). Heterologous overexpression, purification and characterisation of an alcohol dehydrogenase (ADH2) from Halobacterium sp. NRC-1. Mol. Biotechnol., 55, 143–149.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Magonet, E., Hayen, P., Delforge, D., Delaive, E., & Remacle, J. (1992). Importance of the structural zinc atom for the stability of yeast alcohol dehydrogenase. Biochem. J., 287, 361–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Oren, A. (2002). Halophilic Microorganisms and Their Environments (Vol. 5). New York: Springer.

    Google Scholar 

  21. 21.

    Oren, A. (2002). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol., 28, 56–63.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Quaglia, D., Pori, M., Galletti, P., Emer, E., Paradisi, F., & Giacomini, D. (2013). His-tagged Horse liver alcohol dehydrogenase: immobilization and application in the bio-based enantioselective synthesis of (S)-arylpropanols. Process Biochem., 48, 810–818.

    Article  CAS  Google Scholar 

  23. 23.

    Sellek, G. A., & Chaudhuri, J. B. (1999). Biocatalysis in organic media using enzymes from extremophiles. Enyzme Microbial. Technol., 25, 471–482.

    Article  CAS  Google Scholar 

  24. 24.

    Stoeckenius, W. (1981). Walsby’s square bacterium: fine structure of an orthogonal procaryote. J. Bacteriol., 148, 352–360.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Strillinger, E., Grötzinger, S. W., Allers, T., Eppinger, J., & Weuster-Botz, D. (2016). Production of halophilic proteins using Haloferax volcanii H1895 in a stirred-tank bioreactor. Appl. Microbiol. Biotechnol., 100, 1183–1195.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Sudo, Y., et al. (2011). A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. J. Biol. Chem., 286, 5967–5976.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Timpson, L. M., Alsafadi, D., Mac Donnchadha, C., Liddell, S., Sharkey, M. A., & Paradisi, F. (2012). Characterization of alcohol dehydrogenase (ADH12) from Haloarcula marismortui, an extreme halophile from the Dead Sea. Extremophiles, 16, 57–66.

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Timpson, L. M., et al. (2013). A comparison of two novel alcohol dehydrogenase enzymes (ADH1 and ADH2) from the extreme halophile Haloferax volcanii. Appl. Microbiol. Biotechnol., 97, 195–203.

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Walsby, A. E. (1980). A square bacterium. Nature, 283, 69–71.

    Article  Google Scholar 

  30. 30.

    Yu, H. Y., & Li, X. (2014). Characterization of an organic solvent-tolerant thermostable glucoamylase from a halophilic isolate, Halolactibacillus sp. SK71 and its application in raw starch hydrolysis for bioethanol production. Biotechnol. Prog., 30, 1262–1268.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support from the Synthesis and Solid State Pharmaceutical Centre and Science Foundation Ireland, Grant Number 12/RC/2275, and Dr. Thorsten Allers for useful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francesca Paradisi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cassidy, J., Paradisi, F. Haloquadratum walsbyi Yields a Versatile, NAD+/NADP+ Dual Affinity, Thermostable, Alcohol Dehydrogenase (HwADH). Mol Biotechnol 60, 420–426 (2018). https://doi.org/10.1007/s12033-018-0083-6

Download citation

Keywords

  • Haloquadratum walsbyi
  • Alcohol dehydrogenase
  • Thermoactivity
  • Dual cofactor specificity