Haloquadratum walsbyi Yields a Versatile, NAD+/NADP+ Dual Affinity, Thermostable, Alcohol Dehydrogenase (HwADH)

Original Paper
  • 19 Downloads

Abstract

This study presents the first example of an alcohol dehydrogenase (ADH) from the halophilic archaeum Haloquadratum walsbyi (HwADH). A hexahistidine-tagged recombinant HwADH was heterologously overexpressed in Haloferax volcanii. HwADH was purified in one step and was found to be thermophilic with optimal activity at 65 °C. HwADH was active in the presence of 10% (v/v) organic solvent. The enzyme displayed dual cofactor specificity and a broad substrate scope, and maximum activity was detected with benzyl alcohol and 2-phenyl-1-propanol. HwADH accepted aromatic ketones, acetophenone and phenylacetone as substrates. The enzyme also accepted cyclohexanol and aromatic secondary alcohols, 1-phenylethanol and 4-phenyl-2-butanol. H. walsbyi may offer an excellent alternative to other archaeal sources to expand the toolbox of halophilic biocatalysts.

Keywords

Haloquadratum walsbyi Alcohol dehydrogenase Thermoactivity Dual cofactor specificity 

Abbreviations

ACN

Acetonitrile

ADH

Alcohol dehydrogenase

IMAC

Immobilised metal-affinity chromatography

iPrOH

Isopropanol

SDS–PAGE

Sodium dodecyl sulphate–polyacrylamide gel electrophoresis

EtOH

Ethanol

BzOH

Benzyl alcohol

CycOH

Cyclohexanol

1-PheOH

1-Phenylethanol

(S)-1-PheOH

(S)-1-phenylethanol

(R)-1-PheOH

(R)-1-phenylethanol

2-Phe-1-Prop

2-Phenyl-1-propanol

Notes

Acknowledgements

The authors wish to acknowledge the support from the Synthesis and Solid State Pharmaceutical Centre and Science Foundation Ireland, Grant Number 12/RC/2275, and Dr. Thorsten Allers for useful discussions.

References

  1. 1.
    Allers, T., Barak, S., Liddell, S., Wardell, K., & Mevarech, M. (2010). Improved strains and plasmid vectors for conditional overexpression of His-tagged proteins in Haloferax volcanii. Appl. Environ. Microbiol., 76, 1759–1769.CrossRefGoogle Scholar
  2. 2.
    Alsafadi, D., & Paradisi, F. (2013). Effect of organic solvents on the activity and stability of halophilic alcohol dehydrogenase (ADH2) from Haloferax volcanii. Extremophiles, 17, 115–122.CrossRefGoogle Scholar
  3. 3.
    Alsafadi, D., & Paradisi, F. (2014). Covalent immobilization of alcohol dehydrogenase (ADH2) from Haloferax volcanii: how to maximize activity and optimize performance of halophilic enzymes. Mol. Biotechnol., 56, 240–247.CrossRefGoogle Scholar
  4. 4.
    Alsafadi, D., Alsalman, S., & Paradisi, F. (2017). Extreme halophilic alcohol dehydrogenase mediated highly efficient syntheses of enantiopure aromatic alcohols. Org. Biomol. Chem., 15, 9169–9175.CrossRefGoogle Scholar
  5. 5.
    Becker, E. A., et al. (2014). Phylogenetically driven sequencing of extremely halophilic archaea reveals strategies for static and dynamic osmo-response. PLoS Genet., 10(11), e1004784.CrossRefGoogle Scholar
  6. 6.
    Bolhuis, H., et al. (2006). The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genom., 7, 169.CrossRefGoogle Scholar
  7. 7.
    Borowitzka, M. A., & Siva, C. J. (2007). The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J. Appl. Phycol., 19, 567–590.CrossRefGoogle Scholar
  8. 8.
    Burns, D. G., Camakaris, H. M., Janssen, P. H., & Dyall-Smith, M. L. (2004). Cultivation of Walsby’s square haloarchaeon. FEMS Microbiol. Lett., 238, 469–473.Google Scholar
  9. 9.
    Cao, Y., Liao, L., Xu, X. W., Oren, A., Wang, C., Zhu, X. F., et al. (2008). Characterization of alcohol dehydrogenase from the haloalkaliphilic archaeon Natronomonas pharaonis. Extremophiles, 12, 471–476.CrossRefGoogle Scholar
  10. 10.
    Cassidy, J., Bruen, L., Rosini, E., Molla, G., Pollegioni, L., & Paradisi, F. (2017). Engineering substrate promiscuity in halophilic alcohol dehydrogenase (HvADH2) by in silico design. PLoS ONE, 12(11), e0187482.CrossRefGoogle Scholar
  11. 11.
    Chellapandi, P., & Balachandramohan, J. (2011). Molecular evolution-directed approach for designing archaeal formyltetrahydrofolate ligase. Turk. J. Biochem., 36, 122–135.Google Scholar
  12. 12.
    Cuebas-Irizzarry, M. F., Irizarry-Caro, R. A., López-Morales, C., Badillo-Rivera, K. M., Rodríguez-Minguela, C. M., & Montalvo-Rodríguez, R. (2017). Cloning and molecular characterization of an alpha-glucosidase (MalH) from the halophilic archaeon Haloquadratum walsbyi. Life, 7, 46.CrossRefGoogle Scholar
  13. 13.
    Fu, H. Y., Chang, Y. N., Jheng, M. J., & Yang, C. S. (2012). Ser(262) determines the chloride-dependent colour tuning of a new halorhodopsin from Haloquadratum walsbyi. Biosci. Rep., 32, 501–509.CrossRefGoogle Scholar
  14. 14.
    Galletti, P., Emer, E., Gucciardo, G., Quintavalla, A., Pori, M., & Giacomini, D. (2010). Chemoenzymatic synthesis of (2S)-2-arylpropanols through a dynamic kinetic resolution of 2-arylpropanals with alcohol dehydrogenases. Org. Biomol. Chem., 8, 4117–4123.CrossRefGoogle Scholar
  15. 15.
    Hartman, A. L., et al. (2010). The complete genome sequence of Haloferax volcanii DS2, a model archaeon. PLoS ONE, 5, e9605.CrossRefGoogle Scholar
  16. 16.
    Kuipers, R. K., et al. (2009). Correlated mutation analyses on super-family alignments reveal functionally important residues. Proteins, 76, 608–616.CrossRefGoogle Scholar
  17. 17.
    Large, A., Stamme, C., Lange, C., Duan, Z., Allers, T., Soppa, J., et al. (2007). Characterization of a tightly controlled promoter of the halophilic archaeon Haloferax volcanii and its use in the analysis of the essential cct1 gene. Mol. Microbiol., 66, 1092–1106.CrossRefGoogle Scholar
  18. 18.
    Liliensiek, A. K., Cassidy, J., Gucciardo, G., Whitely, C., & Paradisi, F. (2013). Heterologous overexpression, purification and characterisation of an alcohol dehydrogenase (ADH2) from Halobacterium sp. NRC-1. Mol. Biotechnol., 55, 143–149.CrossRefGoogle Scholar
  19. 19.
    Magonet, E., Hayen, P., Delforge, D., Delaive, E., & Remacle, J. (1992). Importance of the structural zinc atom for the stability of yeast alcohol dehydrogenase. Biochem. J., 287, 361–365.CrossRefGoogle Scholar
  20. 20.
    Oren, A. (2002). Halophilic Microorganisms and Their Environments (Vol. 5). New York: Springer.CrossRefGoogle Scholar
  21. 21.
    Oren, A. (2002). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol., 28, 56–63.CrossRefGoogle Scholar
  22. 22.
    Quaglia, D., Pori, M., Galletti, P., Emer, E., Paradisi, F., & Giacomini, D. (2013). His-tagged Horse liver alcohol dehydrogenase: immobilization and application in the bio-based enantioselective synthesis of (S)-arylpropanols. Process Biochem., 48, 810–818.CrossRefGoogle Scholar
  23. 23.
    Sellek, G. A., & Chaudhuri, J. B. (1999). Biocatalysis in organic media using enzymes from extremophiles. Enyzme Microbial. Technol., 25, 471–482.CrossRefGoogle Scholar
  24. 24.
    Stoeckenius, W. (1981). Walsby’s square bacterium: fine structure of an orthogonal procaryote. J. Bacteriol., 148, 352–360.Google Scholar
  25. 25.
    Strillinger, E., Grötzinger, S. W., Allers, T., Eppinger, J., & Weuster-Botz, D. (2016). Production of halophilic proteins using Haloferax volcanii H1895 in a stirred-tank bioreactor. Appl. Microbiol. Biotechnol., 100, 1183–1195.CrossRefGoogle Scholar
  26. 26.
    Sudo, Y., et al. (2011). A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. J. Biol. Chem., 286, 5967–5976.CrossRefGoogle Scholar
  27. 27.
    Timpson, L. M., Alsafadi, D., Mac Donnchadha, C., Liddell, S., Sharkey, M. A., & Paradisi, F. (2012). Characterization of alcohol dehydrogenase (ADH12) from Haloarcula marismortui, an extreme halophile from the Dead Sea. Extremophiles, 16, 57–66.CrossRefGoogle Scholar
  28. 28.
    Timpson, L. M., et al. (2013). A comparison of two novel alcohol dehydrogenase enzymes (ADH1 and ADH2) from the extreme halophile Haloferax volcanii. Appl. Microbiol. Biotechnol., 97, 195–203.CrossRefGoogle Scholar
  29. 29.
    Walsby, A. E. (1980). A square bacterium. Nature, 283, 69–71.CrossRefGoogle Scholar
  30. 30.
    Yu, H. Y., & Li, X. (2014). Characterization of an organic solvent-tolerant thermostable glucoamylase from a halophilic isolate, Halolactibacillus sp. SK71 and its application in raw starch hydrolysis for bioethanol production. Biotechnol. Prog., 30, 1262–1268.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ChemistryUniversity of NottinghamUniversity ParkUK
  2. 2.Synthesis and Solid State Pharmaceutical Centre (SSPC), School of ChemistryUniversity College DublinBelfield, Dublin 4Ireland

Personalised recommendations