Advertisement

Molecular Biotechnology

, Volume 60, Issue 5, pp 350–361 | Cite as

Ectopic Expression of Rice PYL3 Enhances Cold and Drought Tolerance in Arabidopsis thaliana

  • Sangram K. Lenka
  • Senthilkumar K. Muthusamy
  • Viswanathan Chinnusamy
  • Kailash C. Bansal
Original Paper

Abstract

Abscisic acid (ABA) plays an important role in plant development and adaptation to abiotic stresses. The pyrabactin resistance-like (PYL) gene family has been characterized as intracellular ABA receptors in Arabidopsis. We describe here the functional characterization of PYL3 ABA receptor from a drought-tolerant rice landrace Nagina 22 (N22). The induced expression level of the PYL3 transcript was observed in the N22 under different stress treatments, including cold, drought, high temperature, salt and ABA. In contrast, the expression of PYL3 was down-regulated in drought-susceptible rice cv. IR64 in response to above stresses. C-terminal GFP translational fusion of OsPYL3 was localized to both cytosol and nucleus explaining in part functional conservation of PYL protein as ABA receptor. Arabidopsis transgenic lines overexpressing OsPYL3 were hypersensitive to ABA suggesting ABA signaling pathway-dependent molecular response of the OsPYL3. Further, constitutive overexpression of OsPYL3 in Arabidopsis led to improved cold and drought stress tolerance. Thus, OsPYL3 identified in this study could be a good candidate for genetic improvement of cold and drought stress tolerance of rice and other crop plants.

Keywords

ABA receptor Rice Cold Drought PYL Abiotic stress 

Notes

Acknowledgements

This work was supported by the Indian Council of Agricultural Research (ICAR)-sponsored Network Project on Transgenics in Crops (NPTC). SKL acknowledges the University Grants Commission (UGC) and the Council of Scientific and Industrial Research (CSIR) for a CSIR-UGC JRF and SRF fellowship. SKM acknowledges the Department of Science and Technology (DST) for a DST-INSPIRE fellowship. The plants were grown in a space provided by the National Phytotron Facility, IARI. VC was supported by NASF (ICAR) project (Grant No. NFBSFARA/Phen 2015). Assistance provided by Mr. Amit K. Singh and Mr. Jeet B. Singh for growing rice and Arabidopsis plants is acknowledged.

Author Contributions

SKL did all the experiments, experimental design and drafted the manuscript. SKM performed ABA and cold phenotyping of the transgenic Arabidopsis on plates. VC and KCB participated in experimental design and manuscript writing. All authors read and approved the final manuscript.

Supplementary material

12033_2018_76_MOESM1_ESM.jpg (82 kb)
Supplemental Fig. 1 Representative data showing screening of T2 OsPYL3 transgenic lines by RT-PCR. a.) Total RNA isolated from T2 plants b.) Expression of Tubulin (AtTub6) as a reference gene c.) Expression of randomly chosen OsPYL3 plants (T2) showing transgene expression. T2 plants showing OsPYL3 qualitative expression level equivalent to lane 6-8 are taken forward for further physiological analysis. (JPEG 81 kb)
12033_2018_76_MOESM2_ESM.tif (25 kb)
Supplemental Fig. 2 Quantitative estimation of root length and shoot biomass of WT and CaMV35S:OsPYL3 transgenic plants grown in 20 µM ABA compared to control. a.) Root length (measured in cm) of OsPYL3 overexpressing seedling was significantly (p value < 0.001) reduced in the ABA-containing medium compared to WT. b.) Shoot biomass (measured in g) of OsPYL3 transgenics was significantly lower (p value < 0.001) in ABA-containing medium compared to WT. (TIFF 24 kb)
12033_2018_76_MOESM3_ESM.tif (620 kb)
Supplemental Fig. 3 Phenotypic evaluation of OsPYL3 overexpressing lines (T2) grown in pots under cold and drought stresses. a). Cold stress at 4° C was imposed on both WT and OsPYL3 plants for 14 days after transplanting, b). Drought stress was imposed starting from the 14th day after transplanting till next 15 days by withholding water. (TIFF 619 kb)
12033_2018_76_MOESM4_ESM.docx (23 kb)
Supplementary material 4 (DOCX 23 kb)

References

  1. 1.
    Aleman, F., Yazaki, J., Lee, M., Takahashi, Y., Kim, A. Y., Li, Z., et al. (2016). An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: A putative link of ABA and JA signaling. Scientific Reports, 6, 28941.  https://doi.org/10.1038/srep28941.CrossRefGoogle Scholar
  2. 2.
    Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Peirats-Llobet, M., Pizzio, G. A., Fernandez, M. A., et al. (2013). PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiology, 161(2), 931–941.CrossRefGoogle Scholar
  3. 3.
    Bansal, K. C., Lenka, S. K., & Mondal, T. K. (2014). Genomic resources for breeding crops with enhanced abiotic stress tolerance. Plant Breeding, 133(1), 1–11.  https://doi.org/10.1111/pbr.12117.CrossRefGoogle Scholar
  4. 4.
    Bansal, K. C., Lenka, S. K., & Tuteja, N. (2011). Abscisic acid in abiotic stress tolerance: an ‘omics’ approach. In N. Tuteja, S. S. Gill, & R. Tuteja (Eds.), Omics and plant abiotic stress tolerance (pp. 143–150). Sharjah: Bentham Science.Google Scholar
  5. 5.
    Bello, B., Zhang, X., Liu, C., Yang, Z., Wang, Q., Zhao, G., et al. (2014). Cloning of Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 gene (GhSnRK2) and its overexpression in transgenic Arabidopsis escalates drought and low temperature tolerance. PLoS ONE, 9(11), e112269.  https://doi.org/10.1371/journal.pone.0112269.CrossRefGoogle Scholar
  6. 6.
    Chandler, P. M., & Robertson, M. (1994). Gene expression regulated by abscisic acid and its relation to stress tolerance. Annual Review of Plant Biology, 45(1), 113–141.CrossRefGoogle Scholar
  7. 7.
    Chou, K. C., & Shen, H. B. (2010). Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE, 5(6), e11335.  https://doi.org/10.1371/journal.pone.0011335.CrossRefGoogle Scholar
  8. 8.
    Clough, S. J., & Bent, A. F. (1998). Floral dip: A simplified method forAgrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16(6), 735–743.  https://doi.org/10.1046/j.1365-313x.1998.00343.x.CrossRefGoogle Scholar
  9. 9.
    Cutler, A. J., & Krochko, J. E. (1999). Formation and breakdown of ABA. Trends in Plant Science, 4(12), 472–478.CrossRefGoogle Scholar
  10. 10.
    Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic acid: Emergence of a core signaling network. Annual Reviews Plant Biology, 61, 651–679.CrossRefGoogle Scholar
  11. 11.
    Finkelstein, R. (2013). Abscisic Acid synthesis and response. The Arabidopsis book, 11, e0166.  https://doi.org/10.1199/tab.0166.CrossRefGoogle Scholar
  12. 12.
    Fu, M., Kang, H. K., Son, S. H., Kim, S. K., & Nam, K. H. (2014). A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA. Plant and Cell Physiology, 55(11), 1892–1904.  https://doi.org/10.1093/pcp/pcu118.CrossRefGoogle Scholar
  13. 13.
    Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.-Y., et al. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature, 462(7273), 660–664.CrossRefGoogle Scholar
  14. 14.
    Gilmour, S. J., & Thomashow, M. F. (1991). Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Molecular Biology, 17(6), 1233–1240.CrossRefGoogle Scholar
  15. 15.
    Gonzalez-Guzman, M., Pizzio, G. A., Antoni, R., Vera-Sirera, F., Merilo, E., Bassel, G. W., et al. (2012). Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. The Plant Cell, 24(6), 2483–2496.CrossRefGoogle Scholar
  16. 16.
    Hao, Q., Yin, P., Li, W., Wang, L., Yan, C., Lin, Z., et al. (2011). The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins. Molecular Cell, 42(5), 662–672.CrossRefGoogle Scholar
  17. 17.
    Hauser, F., Waadt, R., & Schroeder, J. I. (2011). Evolution of abscisic acid synthesis and signaling mechanisms. Current Biology, 21(9), R346–R355.  https://doi.org/10.1016/j.cub.2011.03.015.CrossRefGoogle Scholar
  18. 18.
    He, Y., Hao, Q., Li, W., Yan, C., Yan, N., & Yin, P. (2014). Identification and characterization of ABA receptors in Oryza sativa. PLoS ONE, 9(4), e95246.  https://doi.org/10.1371/journal.pone.0095246.CrossRefGoogle Scholar
  19. 19.
    Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., et al. (2008). Genevestigator V3: A reference expression database for the meta-analysis of transcriptomes. Advances in Bioinformatics.  https://doi.org/10.1155/2008/420747.Google Scholar
  20. 20.
    Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., et al. (2001). Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. The Plant Journal, 27(4), 325–333.CrossRefGoogle Scholar
  21. 21.
    Jaradat, M. R., Feurtado, J. A., Huang, D., Lu, Y., & Cutler, A. J. (2013). Multiple roles of the transcription factor AtMYBR1/AtMYB44 in ABA signaling, stress responses, and leaf senescence. BMC Plant Biology, 13, 192.  https://doi.org/10.1186/1471-2229-13-192.CrossRefGoogle Scholar
  22. 22.
    Kim, H., Hwang, H., Hong, J. W., Lee, Y. N., Ahn, I. P., Yoon, I. S., et al. (2012). A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. Journal of Experimental Botany, 63(2), 1013–1024.  https://doi.org/10.1093/jxb/err338.CrossRefGoogle Scholar
  23. 23.
    Kim, H., Lee, K., Hwang, H., Bhatnagar, N., Kim, D. Y., Yoon, I. S., et al. (2014). Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression. Journal of Experimental Botany, 65(2), 453–464.  https://doi.org/10.1093/jxb/ert397.CrossRefGoogle Scholar
  24. 24.
    Klingler, J. P., Batelli, G., & Zhu, J. K. (2010). ABA receptors: The START of a new paradigm in phytohormone signalling. Journal of Experimental Botany, 61(12), 3199–3210.CrossRefGoogle Scholar
  25. 25.
    Koornneef, M., Jorna, M. L., Brinkhorst-van der Swan, D. L., & Karssen, C. M. (1982). The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) heynh. Theoretical and Applied Genetics, 61(4), 385–393.  https://doi.org/10.1007/BF00272861.Google Scholar
  26. 26.
    Lenka, S. K. (2010). Characterization of Abiotic stress responsive cis-elements and transcription factor genes from rice (Oryza sativa L.). Dissertation, Indian Agricultural Research Institute, New Delhi.Google Scholar
  27. 27.
    Lenka, S. K., Katiyar, A., Chinnusamy, V., & Bansal, K. C. (2010). Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnology Journal, 9(3), 315–327.  https://doi.org/10.1111/j.1467-7652.2010.00560.x.CrossRefGoogle Scholar
  28. 28.
    Lenka, S. K., Lohia, B., Kumar, A., Chinnusamy, V., & Bansal, K. C. (2009). Genome-wide targeted prediction of ABA responsive genes in rice based on over-represented cis-motif in co-expressed genes. Plant Molecular Biology, 69(3), 261–271.  https://doi.org/10.1007/s11103-008-9423-4.CrossRefGoogle Scholar
  29. 29.
    Lenka, S. K., Nims, N. E., Vongpaseuth, K., Boshar, R. A., Roberts, S. C., & Walker, E. L. (2015). Jasmonate-responsive expression of paclitaxel biosynthesis genes in Taxus cuspidata cultured cells is negatively regulated by the bHLH transcription factors TcJAMYC1, TcJAMYC2, and TcJAMYC4. Frontiers in Plant Science, 6, 115.  https://doi.org/10.3389/fpls.2015.00115.CrossRefGoogle Scholar
  30. 30.
    Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., et al. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 324(5930), 1064–1068.  https://doi.org/10.1126/science.1172408.Google Scholar
  31. 31.
    Marin, E., Nussaume, L., Quesada, A., Gonneau, M., Sotta, B., Hugueney, P., et al. (1996). Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO Journal, 15(10), 2331–2342.Google Scholar
  32. 32.
    Melcher, K., Ng, L. M., Zhou, X. E., Soon, F. F., Xu, Y., Suino-Powell, K. M., et al. (2009). A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature, 462(7273), 602–608.  https://doi.org/10.1038/nature08613.CrossRefGoogle Scholar
  33. 33.
    Nambara, E., & Marion-Poll, A. (2005). Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology, 56, 165–185.  https://doi.org/10.1146/annurev.arplant.56.032604.144046.CrossRefGoogle Scholar
  34. 34.
    Nishimura, N., Hitomi, K., Arvai, A. S., Rambo, R. P., Hitomi, C., Cutler, S. R., et al. (2009). Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science, 326(5958), 1373–1379.  https://doi.org/10.1126/science.1181829.CrossRefGoogle Scholar
  35. 35.
    Park, S.-Y., Peterson, F. C., Mosquna, A., Yao, J., Volkman, B. F., & Cutler, S. R. (2015). Agrochemical control of plant water use using engineered abscisic acid receptors. Nature, 520(7548), 545–548.  https://doi.org/10.1038/nature14123.CrossRefGoogle Scholar
  36. 36.
    Park, S. Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., et al. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 324(5930), 1068–1071.  https://doi.org/10.1126/science.1173041.Google Scholar
  37. 37.
    Pizzio, G. A., Rodriguez, L., Antoni, R., Gonzalez-Guzman, M., Yunta, C., Merilo, E., et al. (2013). The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA interaction for abscisic acid signaling and plant drought resistance. Plant Physiology, 163(1), 441–455.  https://doi.org/10.1104/pp.113.224162.CrossRefGoogle Scholar
  38. 38.
    Santiago, J., Dupeux, F., Round, A., Antoni, R., Park, S. Y., Jamin, M., et al. (2009). The abscisic acid receptor PYR1 in complex with abscisic acid. Nature, 462(7273), 665–668.  https://doi.org/10.1038/nature08591.CrossRefGoogle Scholar
  39. 39.
    Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., et al. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J, 60(4), 575–588.  https://doi.org/10.1111/j.1365-313X.2009.03981.x.CrossRefGoogle Scholar
  40. 40.
    Shi, H., Ye, T., Zhu, J.-K., & Chan, Z. (2014). Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. Journal of Experimental Botany, 65(15), 4119–4131.CrossRefGoogle Scholar
  41. 41.
    Sreenivasulu, N., Sopory, S. K., & Kavi Kishor, P. B. (2007). Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene, 388(1–2), 1–13.  https://doi.org/10.1016/j.gene.2006.10.009.CrossRefGoogle Scholar
  42. 42.
    Tian, X., Wang, Z., Li, X., Lv, T., Liu, H., Wang, L., et al. (2015). Characterization and functional analysis of pyrabactin resistance-like abscisic acid receptor family in rice. Rice, 8(1), 28.CrossRefGoogle Scholar
  43. 43.
    Varshney, R. K., Bansal, K. C., Aggarwal, P. K., Datta, S. K., & Craufurd, P. Q. (2011). Agricultural biotechnology for crop improvement in a variable climate: Hope or hype? Trends in Plant Science, 16(7), 363–371.  https://doi.org/10.1016/j.tplants.2011.03.004.CrossRefGoogle Scholar
  44. 44.
    Wang, Y., Ying, J., Kuzma, M., Chalifoux, M., Sample, A., McArthur, C., et al. (2005). Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J, 43(3), 413–424.  https://doi.org/10.1111/j.1365-313X.2005.02463.x.CrossRefGoogle Scholar
  45. 45.
    Weiner, J. J., Peterson, F. C., Volkman, B. F., & Cutler, S. R. (2010). Structural and functional insights into core ABA signaling. Current Opinion in Plant Biology, 13(5), 495–502.  https://doi.org/10.1016/j.pbi.2010.09.007.CrossRefGoogle Scholar
  46. 46.
    Xing, L., Zhao, Y., Gao, J., Xiang, C., & Zhu, J. K. (2016). The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth. Sci Rep, 6, 27177.  https://doi.org/10.1038/srep27177.CrossRefGoogle Scholar
  47. 47.
    Yin, P., Fan, H., Hao, Q., Yuan, X., Wu, D., Pang, Y., et al. (2009). Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nature Structural & Molecular Biology, 16(12), 1230–1236.  https://doi.org/10.1038/nsmb.1730.CrossRefGoogle Scholar
  48. 48.
    Yu, J., Yang, L., Liu, X., Tang, R., Wang, Y., Ge, H., et al. (2016). Overexpression of poplar Pyrabactin resistance-like abscisic acid receptors promotes abscisic acid sensitivity and drought resistance in transgenic Arabidopsis. PLoS ONE, 11(12), e0168040.  https://doi.org/10.1371/journal.pone.0168040.CrossRefGoogle Scholar
  49. 49.
    Zhao, Y., Chan, Z., Gao, J., Xing, L., Cao, M., Yu, C., et al. (2016). ABA receptor PYL9 promotes drought resistance and leaf senescence. Proceedings of the National Academy of Sciences, 113(7), 1949–1954.  https://doi.org/10.1073/pnas.1522840113.CrossRefGoogle Scholar
  50. 50.
    Zhao, Y., Chan, Z., Xing, L., Liu, X., Hou, Y. J., Chinnusamy, V., et al. (2013). The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling. Cell Research, 23(12), 1380–1395.  https://doi.org/10.1038/cr.2013.149.CrossRefGoogle Scholar
  51. 51.
    Zhao, Y., Xing, L., Wang, X., Hou, Y. J., Gao, J., Wang, P., et al. (2014). The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Science Signaling, 7(328), ra53.  https://doi.org/10.1126/scisignal.2005051.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sangram K. Lenka
    • 1
    • 4
  • Senthilkumar K. Muthusamy
    • 1
    • 2
  • Viswanathan Chinnusamy
    • 3
  • Kailash C. Bansal
    • 1
    • 4
  1. 1.ICAR-National Research Centre on Plant BiotechnologyIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.ICAR-Central Tuber Crops Research InstituteThiruvananthapuramIndia
  3. 3.Division of Plant PhysiologyICAR-Indian Agricultural Research InstituteNew DelhiIndia
  4. 4.TERI-Deakin NanoBiotechnology CentreThe Energy and Resources InstituteNew DelhiIndia

Personalised recommendations