Molecular Biotechnology

, Volume 60, Issue 4, pp 319–328 | Cite as

Improving the Catalytic Activity and Thermostability of MAS1 Lipase by Alanine Substitution

  • Ge Zhao
  • Jianrong Wang
  • Qingyun Tang
  • Dongming Lan
  • Yonghua Wang


MAS1 is a lipase isolated from Streptomyces sp. strain W007 with potential application in biotechnology. Structural analysis of MAS1 lipase showed that eight amino acids with bulkier side located in the substrate-binding pocket may be involved in affecting catalytic performance. Alanine substitutions of those residues were conducted to reduce steric clash of catalyzed pocket and probe their functional roles. The kcat/Km of mutants H108A, F153A, and V233A increased to 2.3-, 2.1-, and 1.4-fold, respectively. Interestingly, the half-life (60 °C) of F153A had shifted to 523 min after mutagenesis, which was fivefold enhancement toward that of MAS1 wide-type. Furthermore, higher hydrolysis ability of mutants H108A and F153A toward palm stearin of high melting temperature made them potentially applicable in oil/fat modification. Our work provided an example to obtain biocatalysts with desired catalytic behaviors by protein engineering.


MAS1 lipase Steric clash Alanine substitution Site-directed mutagenesis 



Wild type


Polyunsaturated fatty acids






Polymerase chain reaction


Sodium dodecyl sulfate–polyacrylamide gel electrophoresis


Fatty acids



This work was made possible with funding provided by the National Natural Science Foundation of China (21376098, 31471690, 31601398) and Science and Technology Planning project of Guangdong Province (2016B090920082).

Compliance with Ethical Standards

Conflict of interest

The authors have declared no conflict of interests.

Supplementary material

12033_2018_62_MOESM1_ESM.docx (74 kb)
Supplementary material 1 (DOCX 73 kb)


  1. 1.
    Jaeger, K. E., & Eggert, T. (2002). Lipases for biotechnology [review]. Current Opinion in Biotechnology, 13, 390–397.CrossRefGoogle Scholar
  2. 2.
    Marciello, M., Filice, M., & Palomo, J. M. (2012). Different strategies to enhance the activity of lipase catalysts. Catalysis Science & Technology, 2, 1531–1543.CrossRefGoogle Scholar
  3. 3.
    Kourist, R., Brundiek, H., & Bornscheuer, U. T. (2010). Protein engineering and discovery of lipases. European Journal of Lipid Science and Technology, 112, 64–74.CrossRefGoogle Scholar
  4. 4.
    Gupta, R., Gupta, N., & Rathi, P. (2004). Bacterial lipases: An overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64, 763–781.CrossRefGoogle Scholar
  5. 5.
    Treichel, H., Oliveira, D. D., Mazutti, M. A., Luccio, M. D., & Oliveira, J. V. (2010). A review on microbial lipases production. Food and Bioprocess Technology, 3, 182–196.CrossRefGoogle Scholar
  6. 6.
    Singh, A. K., & Mukhopadhyay, M. (2012). Overview of fungal lipase: A review. Applied Biochemistry and Biotechnology, 166, 486–520.CrossRefGoogle Scholar
  7. 7.
    Mohammadi, M., Sepehrizadeh, Z., Ebrahim-Habibi, A., Shahverdi, A. R., Faramarzi, M. A., & Setayesh, N. (2016). Enhancing activity and thermostability of lipase a from Serratia marcescens by site-directed mutagenesis. Enyzme and Microbial Technology, 93, 18–28.CrossRefGoogle Scholar
  8. 8.
    Kawata, T., & Ogino, H. (2009). Enhancement of the organic solvent-stability of the LST-03 lipase by directed evolution. Biotechnology Progress, 25, 1605–1611.Google Scholar
  9. 9.
    Yu, X. W., Tan, N. J., Xiao, R., & Xu, Y. (2012). Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: Increased thermostability and altered acyl chain length specificity. PLoS ONE, 7, e46388.CrossRefGoogle Scholar
  10. 10.
    Cherry, J. R., & Fidantsef, A. L. (2003). Directed evolution of industrial enzymes: An update. Current Opinion in Biotechnology, 14, 438–443.CrossRefGoogle Scholar
  11. 11.
    Lehmann, M., & Wyss, M. (2001). Engineering proteins for thermostability: The use of sequence alignments versus rational design and directed evolution. Current Opinion in Biotechnology, 12, 371–375.CrossRefGoogle Scholar
  12. 12.
    Tambunan, U. S. F., Randy, A., & Parikesit, A. A. (2014). Design of Candida antarctica lipase B thermostability improvement by introducing extra disulfide bond into the enzyme. OnLine Journal of Biological Sciences, 14, 108–118.CrossRefGoogle Scholar
  13. 13.
    Tan, Z., Li, J., Wu, M., & Wang, J. (2014). Enhancing the thermostability of a cold-active lipase from Penicillium cyclopium, by in silico design of a disulfide bridge. Applied Biochemistry and Biotechnology, 173, 1752–1764.CrossRefGoogle Scholar
  14. 14.
    Poso, D., Sessions, R. B., Lorch, M., & Clarke, A. R. (2000). Progressive stabilization of intermediate and transition states in protein folding reactions by introducing surface hydrophobic residues. Journal of Biological Chemistry, 275, 35723–35726.CrossRefGoogle Scholar
  15. 15.
    Frigerio, F., Margarit, I., Nogarotto, R., De, F. V., & Grandi, G. (1996). Cumulative stabilizing effects of hydrophobic interactions on the surface of the neutral protease from Bacillus subtilis. Protein Engineering, 9, 439–445.CrossRefGoogle Scholar
  16. 16.
    Machius, M., Declerck, N., Huber, R., & Wiegand, G. (2003). Kinetic stabilization of Bacillus licheniformis alpha-amylase through introduction of hydrophobic residues at the surface. Journal of Biological Chemistry, 278, 11546–11553.CrossRefGoogle Scholar
  17. 17.
    Zhou, P., Lan, D., Popowicz, G. M., Wang, X., Bo, Y., & Wang, Y. (2017). Enhancing H2O2, resistance of an esterase from Pyrobaculum calidifontis, by structure-guided engineering of the substrate binding site. Applied Microbiology and Biotechnology, 101, 5689–5697.CrossRefGoogle Scholar
  18. 18.
    Yang, J., Koga, Y., Nakano, H., & Yamane, T. (2002). Modifying the chain-length selectivity of the lipase from Burkholderia cepacia KWI-56 through in vitro combinatorial mutagenesis in the substrate-binding site. Protein Engineering, 15, 147–152.CrossRefGoogle Scholar
  19. 19.
    Yuan, D., Lan, D., Xin, R., Yang, B., & Wang, Y. (2016). Screening and characterization of a thermostable lipase from marine Streptomyces sp. strain W007. Biotechnology and Applied Biochemistry, 63, 41–50.CrossRefGoogle Scholar
  20. 20.
    Zhao, Z., Hou, S., Lan, D., Wang, X., Liu, J., Khan, F. I., et al. (2017). Crystal structure of a lipase from Streptomyces sp. strain W007—Implications for thermostability and regiospecificity. FEBS Journal, 284, 3506–3519.CrossRefGoogle Scholar
  21. 21.
    Wang, X., Li, D., Man, Q., Durrani, R., Bo, Y., & Wang, Y. (2017). Immobilized MAS1 lipase showed high esterification activity in the production of triacylglycerols with n-3 polyunsaturated fatty acids. Food Chemistry, 216, 260–267.CrossRefGoogle Scholar
  22. 22.
    Wang, X., Li, D., Wang, W., Yang, B., & Wang, Y. (2016). A highly efficient immobilized MAS1 lipase for the glycerolysis reaction of n-3 PUFA-rich ethyl esters. Journal of Molecular Catalysis B, Enzymatic, 134, 25–31.CrossRefGoogle Scholar
  23. 23.
    Wang, X., Qin, X., Li, D., Yang, B., & Wang, Y. (2017). One-step synthesis of high-yield biodiesel from waste cooking oils by a novel and highly methanol-tolerant immobilized lipase. Bioresource Technology, 235, 18–24.CrossRefGoogle Scholar
  24. 24.
    Tang, Q., Lan, D., Yang, B., Khan, F. I., & Wang, Y. (2017). Site-directed mutagenesis studies of hydrophobic residues in the lid region of T1 lipase. European Journal of Lipid Science and Technology, 119, 1–8.CrossRefGoogle Scholar
  25. 25.
    Xu, Y., Guo, S., Wang, W., Wang, Y., & Yang, B. (2013). Enzymatic hydrolysis of palm stearin to produce diacylglycerol with a highly thermostable lipase. European Journal of Lipid Science and Technology, 115, 564–570.CrossRefGoogle Scholar
  26. 26.
    Karkhane, A. A., Yakhchali, B., Jazii, F. R., & Bambai, B. (2009). The effect of substitution of Phe181 and Phe182 with Ala on activity, substrate specificity and stabilization of substrate at the active site of Bacillus thermocatenulatus lipase. Journal of Molecular Catalysis B, Enzymatic, 61, 162–167.CrossRefGoogle Scholar
  27. 27.
    Gudiukaitė, R., Gegeckas, A., Sadauskas, M., & Citavicius, D. (2015). Detection of Asp371, Phe 375, and Tyr376 influence on GD-95-10 lipase using alanine scanning mutagenesis. Applied Biochemistry and Biotechnology, 178, 1–16.Google Scholar
  28. 28.
    Carrasco-López, C., Godoy, C., De, L. R. B., Fernández-Lorente, G., Palomo, J. M., Guisán, J. M., et al. (2009). Activation of bacterial thermoalkalophilic lipases is spurred by dramatic structural rearrangements. Journal of Biological Chemistry, 284, 4365–4372.CrossRefGoogle Scholar
  29. 29.
    Gao, C., Lan, D., Liu, L., Zhang, H., Yang, B., & Wang, Y. (2014). Site-directed mutagenesis studies of the aromatic residues at the active site of a lipase from Malassezia globosa. Biochimie, 102, 29–36.CrossRefGoogle Scholar
  30. 30.
    Secundo, F., Carrea, G., Tarabiono, C., Gatti-Lafranconi, P., Brocca, S., Lotti, M., et al. (2006). The lid is a structural and functional determinant of lipase activity and selectivity. Journal of Molecular Catalysis B, Enzymatic, 39, 166–170.CrossRefGoogle Scholar
  31. 31.
    Wahab, R. A., Basri, M., Salleh, A. B., Rahman, M. B. A., & Leow, T. C. (2015). Development of a catalytically stable and efficient lipase through an increase in hydrophobicity of the oxyanion residue. Journal of Molecular Catalysis B, Enzymatic, 122, 282–288.CrossRefGoogle Scholar
  32. 32.
    Acharya, P., Rajakumara, E., Sankaranarayanan, R., & Rao, N. M. (2004). Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase. Journal of Molecular Biology, 341, 1271–1281.CrossRefGoogle Scholar
  33. 33.
    Sun, Q., Hui, W., Zhang, H., Luo, H., Shi, P., Bai, Y., et al. (2016). Heterologous production of an acidic thermostable lipase with broad-range pH activity from thermophilic fungus Neosartorya fischeri P1. Journal of Bioscience and Bioengineering, 122, 539–544.CrossRefGoogle Scholar
  34. 34.
    Tanigaki, M., Sakata, M., Takaya, H., & Mimura, K. (1995). Hydrolysis of palm stearin oil by a thermostable lipase in a draft tube-type reactor. Journal of Fermentation and Bioengineering, 80, 340–345.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Food Science and EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.School of Bioscience and BioengineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations