Skip to main content

Advertisement

Log in

Construction and Characterization of a Medium Copy Number Expression Vector Carrying Auto-Inducible dps Promoter to Overproduce a Bacterial Superoxide Dismutase in Escherichia coli

  • original paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Medium copy number expression vector and auto-inducible promoter could be a solution for producing recombinant therapeutic proteins in industrial scale regarding plasmid stability, cost, and product quality. This work aimed to construct a medium copy number pBR322-based expression vector carrying auto-inducible promoter, determine its ability to express heterologous gene, and study its segregational stability. Three stationary-phase promoters of Escherichia coli genes (gadA, dps and sbmC) were used to produce a superoxide dismutase from Staphylococcus equorum (rMnSODSeq) coding region from pBR322Δtet (pBR322-mini). Four plasmids were constructed with different promoters, i.e., T7 (pBMsod), gadA (pMCDsod), dps (pCADsod), and sbmC (pCDSsod) using pBR322-mini as backbone. Results showed that rMnSODSeq expression from pBMsod was significantly higher than that from pJExpress414sod (high copy number plasmid). Meanwhile, rMnSODSeq from pCADsod (auto-inducible promoter) was as high as from pBMsod (IPTG-inducible T7 promoter). rMnSODSeq expressed from pCADsod when bacterial cells entered stationary phase appeared as an active protein band of 23.5 kDa when analyzed by zymography and SDS-PAGE. pCADsod displayed the highest stability compared with pBMsod and pJEXpress414sod by plasmid retention assay. We demonstrate the use of an auto-inducible dps promoter to express high level of heterologous protein, an SOD of S. equorum, from a stable expression vector with medium copy number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lagassé, H. A. D., Alexaki, A., Simhadri, V. L., Katagiri, N. H., Jankowski, W., Sauna, Z. E., & Kimchi-Sarfaty, C. (2017) Recent advances in (therapeutic protein) drug development. F1000Res. https://doi.org/10.12688/f1000research.9970.1.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: Advances and challenges. Frontiers in Microbiology, 5, 1–17.

    Google Scholar 

  3. Baeshen, M. N., Bouback, T. A. F., Alzubaidi, M. A., Bora, R. S., Alotaibi, M. A. T., Alabbas, O. T. O., Alshahrani, S. M., Aljohani, A. A. M., Munshi, R. A. A., Al-Hejin, A., Ahmed, M. M. M., Redwan, E. M., Ramadan, H. A. I., Saini, K. S., & Baeshen, N. A. (2016). Expression and purification of C-peptide containing insulin using Pichia pastoris expression system. BioMed Research International, 2016, 1–7.

    Article  CAS  Google Scholar 

  4. Sanchez-Garcia, L., Martín, L., Mangues, R., Ferrrer-Miralles, N., Vázquez, E., & Villaverde, A. (2016). Recombinant pharmaceuticals from microbial cells: A 2015 update. Microbial Cell Factories, 15, 1–7.

    Article  CAS  Google Scholar 

  5. Huang, C. J., Lin, H., & Yang, X. (2012). Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. Journal of Industrial Microbiology and Biotechnology, 39, 383–399.

    Article  CAS  PubMed  Google Scholar 

  6. Friehs, K. (2004). Plasmid copy number and plasmid stability. Advances in Biochemical Engineering/Biotechnology, 86, 47–82.

    Article  CAS  PubMed  Google Scholar 

  7. Briand, L., Marcion, G., Kriznik, A., Heydel, J. M., Artur, Y., Garrido, C., Seigneuric, R., & Neiers, F. (2016). A self-inducible heterologous protein expression system in Escherichia coli. Scientific Reports, 6, 1–11.

    Article  CAS  Google Scholar 

  8. Jaishankar, J., & Srivastava, P. (2017). Molecular basis of stationary phase survival and applications. Frontiers in Microbiology, 8, 1–12.

    Article  Google Scholar 

  9. Ben, R., Jiying, F., Jian’an, S., Tu, T. N., Jing, S., Jingsong, Z., & Qiuyi, Yaling, S. (2016) An auto-inducible expression system based on the RhlI-RhlR quorum-sensing regulon for recombinant protein production in E. coli. Biotechnology and Bioprocess Engineering, 21, 160–168.

    Article  CAS  Google Scholar 

  10. Castanié-Cornet, M. P., Cam, K., Bastiat, B., Cros, A., Bordes, P., & Gutierrez, C. (2010). Acid stress response in Escherichia coli: Mechanism of regulation of gadA transcription by RcsB and GadE. Nucleic Acid Research, 38, 3546–3554.

    Article  CAS  Google Scholar 

  11. Oh, T. J., Jung, I. L., & Kim, I. G. (2001). The Escherichia coli SOS gene sbmC is regulated by H-NS and RpoS during the SOS induction and stationary growth phase. Biochemical and Biophysical Research Communications, 288, 1052–1058.

    Article  CAS  PubMed  Google Scholar 

  12. De Biase, D., Tramonti, A., Bossa, F., & Visca, P. (1999). The response to stationary-phase stress conditions in Escherichia coli: Role and regulation of the glutamic acid decarboxylase system. Molecular Microbiology, 32, 1198–1211.

    Article  PubMed  Google Scholar 

  13. Amano, F. (2011). SEp22, Salmonella Dps, a key molecule bearing both pathogenicity and resistance to environmental stresses in Salmonella. Journal of Health Science, 57, 458–471.

    Article  CAS  Google Scholar 

  14. Schnetz, K. (2008). Fine-tuned growth phase control of dps, encoding a DNA protection protein, by FIS and H-NS. Molecular Microbiology, 68, 1345–1347.

    Article  CAS  PubMed  Google Scholar 

  15. Zafar, M. A., Carabetta, V. J., Mandel, M. J., & Silhavy, T. J. (2014). Transcriptional occlusion caused by overlapping promoters. Proceedings of the National Academy of Sciences USA, 111, 1557–1561.

    Article  CAS  Google Scholar 

  16. Beloin, C., Valle, J., Latour-Lambert, P., Faure, P., Kzreminski, M., Balestrino, D., Haagensen, J. A., Molin, S., Prensier, G., Arbeille, B., & Ghigo, J. M. (2004). Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Molecular Microbiology, 51, 659–674.

    Article  CAS  PubMed  Google Scholar 

  17. Khil, P. P., & Camerini-Otero, R. D. (2002). Over 1000 genes are involved in the DNA damage response of Escherichia coli. Molecular Microbiology, 44, 89–105.

    Article  CAS  PubMed  Google Scholar 

  18. Retnoningrum, D. S., Rahayu, A. P., Mulyanti, D., Dita, A., Valerius, O., & Ismaya, W. T. (2016). Unique characteristics of recombinant hybrid manganese superoxide dismutase from Staphylococcus equorum and S. saprophyticus. Protein Journal, 35, 136–144.

    Article  CAS  PubMed  Google Scholar 

  19. Chung, C. T., Niemela, S. L., & Miller, R. H. (1989). One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution. Proceedings of the National Academy of Sciences USA, 86, 2172–2175.

    Article  CAS  Google Scholar 

  20. Lee, K., & Choi, C. Y. (1987). Growth and plasmid stability of recombinant E. coli cells producing hepatitis B surface antigen. Korean Journal of Chemical Engineering, 4, 182–186.

    Article  CAS  Google Scholar 

  21. Popov, M., Petrov, S., Kirilov, K., Nacheva, G., & Ivanov, I. (2015). Segregational instability in E. coli of expression plasmids carrying human interferon gamma gene and its 3′-end truncated variants. Biotechnology and Biotechnological Equipment, 23(sup1), 840–843.

    Article  Google Scholar 

  22. Anindyajati, A., Riani, C., & Retnoningrum, D. S. (2016). Plasmid copy number determination by quantitative polymerase chain reaction. Scientia Pharmaceutica, 84, 89–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Da Silva, N. A., & Srikrishnan, S. (2012). Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Research, 12, 197–214.

    Article  CAS  PubMed  Google Scholar 

  24. Shimada, T., Makinoshima, H., Ogawa, Y., Miki, T., Maeda, M., & Ishihama, A. (2004). Classification and strength measurement of stationary-phase promoters by use of a newly developed promoter cloning vector. Journal of Bacteriology, 186, 7112–7122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hamilton, E. P., & Lee, N. (1988). Three binding sites for AraC protein are required for autoregulation of araC in Escherichia coli. Proceedings of the National Academy of Sciences USA, 85, 1749–1753.

    Article  CAS  Google Scholar 

  26. Lee, T. S., Krupa, R. A., Zhang, F., Hajimorad, M., Holtz, W. J., Prasad, N., Lee, S. K., & Keasling, J. D. (2011). BglBrick vectors and datasheets: A synthetic biology platform for gene expression. Journal of Biological Engineering, 5, 1–14.

    Article  CAS  Google Scholar 

  27. Grainger, D. C., Goldberg, M. D., Lee, D. J., & Busby, S. J. W. (2008). Selective repression by Fis and H-NS at the Escherichia coli dps promoter. Molecular Microbiology, 68, 1366–1377.

    Article  CAS  PubMed  Google Scholar 

  28. Romanowski, M. J., Gibney, S. A., & Burley, S. K. (2002). Crystal structure of the Escherichia coli SbmC protein that protects cells from the DNA replication inhibitor microcin B17. Protein, 47, 403–407.

    Article  CAS  Google Scholar 

  29. Yeiser, B., Pepper, E. D., Goodman, M. F., & Finkel, S. E. (2002). SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness. Proceedings of the National Academy of Sciences USA, 99, 8737–8741.

    Article  CAS  Google Scholar 

  30. Einsfeldt, K., Severo Júnior, J. B., Corrêa Argondizzo, A. P., Medeiros, M. A., Alves, T. L. M., Almeida, R. V., & Larentis, A. L. (2011). Cloning and expression of protease ClpP from Streptococcus pneumoniae in Escherichia coli: Study of the influence of kanamycin and IPTG concentration on cell growth, recombinant protein production and plasmid stability. Vaccine, 29, 7136–7143.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially funded by Hibah Kompetensi, DIKTI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debbie Soefie Retnoningrum.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 391 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Retnoningrum, D.S., Santika, I.W.M., Kesuma, S. et al. Construction and Characterization of a Medium Copy Number Expression Vector Carrying Auto-Inducible dps Promoter to Overproduce a Bacterial Superoxide Dismutase in Escherichia coli. Mol Biotechnol 61, 231–240 (2019). https://doi.org/10.1007/s12033-018-00151-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-00151-5

Keywords

Navigation