Skip to main content
Log in

An Improved Method for Identifying Specific DNA-Protein-Binding Sites In Vitro

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Binding of proteins to specific DNA sequences is essential for a variety of cellular processes such as DNA replication, transcription and responses to external stimuli. Chromatin immunoprecipitation is widely used for determining intracellular DNA fragments bound by a specific protein. However, the subsequent specific or accurate DNA-protein-binding sequence is usually determined by DNA footprinting. Here, we report an alternative method for identifying specific sites of DNA-protein-binding (designated SSDP) in vitro. This technique is mainly dependent on antibody-antigen immunity, simple and convenient, while radioactive isotope labeling and optimization of partial degradation by deoxyribonuclease (DNase) are avoided. As an example, the specific binding sequence of a target promoter by DdrO (a DNA damage response protein from Deinococcus radiodurans) in vitro was determined by the developed method. The central sequence of the binding site could be easily located using this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ChIP:

Chromatin immunoprecipitation

SSDP:

Specific sites of DNA-protein-binding

DdrO:

A DNA damage response protein from Deinococcus radiodurans

EMSA:

Electrophoretic mobility shift assay

SPR:

Surface plasmon resonance analyses

PBM:

Protein-binding microarray

ChIA-PET:

Chromatin interaction analysis by paired-end tag sequencing

DHS:

DNase I hypersensitive sites

ENCODE:

Encyclopedia of DNA elements

DDR:

DNA damage response

recA :

Recombinant A

MBP:

Maltose-binding protein

TEV:

Tobacco etch virus

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

BPB:

Bromophenol blue

RDRM:

Radiation and desiccation response motif

References

  1. Liu, C., Wang, L., Li, T., Lin, L., Dai, S., Tian, B., et al. (2014). A PerR-like protein involved in response to oxidative stress in the extreme bacterium Deinococcus radiodurans. Biochemical and Biophysical Research Communications, 450, 575–580.

    Article  CAS  Google Scholar 

  2. Yamazaki, S., Hayano, M., & Masai, H. (2013). Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of replication timing. Trends in Genetics, 29, 449–460.

    Article  CAS  Google Scholar 

  3. Nasmith, C. G., Walkowiak, S., Wang, L., Leung, W. W., Gong, Y., Johnston, A., et al. (2011). Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum. PLoS Pathogens, 7, e1002266.

    Article  CAS  Google Scholar 

  4. Wang, L., Xu, G., Chen, H., Zhao, Y., Xu, N., Tian, B., et al. (2008). DrRRA: A novel response regulator essential for the extreme radioresistance of Deinococcus radiodurans. Molecular Microbiology, 67, 1211–1222.

    Article  CAS  Google Scholar 

  5. Merante, F., Altamentova, S. M., Mickle, D. A., Weisel, R. D., Thatcher, B. J., Martin, B. M., et al. (2002). The characterization and purification of a human transcription factor modulating the glutathione peroxidase gene in response to oxygen tension. Molecular and Cellular Biochemistry, 229, 73–83.

    Article  CAS  Google Scholar 

  6. Mitra, S., Rai, L. S., Chatterjee, G., & Sanyal, K. (2016). Chromatin immunoprecipitation (ChIP) assay in Candida albicans. Methods in Molecular Biology, 1356, 43–57.

    Article  Google Scholar 

  7. Deckmann, K., Rorsch, F., Geisslinger, G., & Grosch, S. (2012). Identification of DNA–protein complexes using an improved, combined western blotting-electrophoretic mobility shift assay (WEMSA) with a fluorescence imaging system. Molecular BioSystems, 8, 1389–1395.

    Article  CAS  Google Scholar 

  8. Ruscher, K., Reuter, M., Kupper, D., Trendelenburg, G., Dirnagl, U., & Meisel, A. (2000). A fluorescence based non-radioactive electrophoretic mobility shift assay. Journal of Biotechnology, 78, 163–170.

    Article  CAS  Google Scholar 

  9. Labbe, S., Harrisson, J. F., & Seguin, C. (2009). Identification of sequence-specific DNA-binding proteins by southwestern blotting. Methods in Molecular Biology, 543, 151–161.

    Article  CAS  Google Scholar 

  10. Stockley, P. G., & Persson, B. (2009). Surface plasmon resonance assays of DNA–protein interactions. Methods in Molecular Biology, 543, 653–669.

    Article  CAS  Google Scholar 

  11. Berger, M. F., & Bulyk, M. L. (2009). Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nature Protocols, 4, 393–411.

    Article  CAS  Google Scholar 

  12. Fullwood, M. J., & Ruan, Y. (2009). ChIP-based methods for the identification of long-range chromatin interactions. Journal of Cellular Biochemistry, 107, 30–39.

    Article  CAS  Google Scholar 

  13. Galas, D. J., & Schmitz, A. (1978). DNAse footprinting: A simple method for the detection of protein-DNA binding specificity. Nucleic Acids Research, 5, 3157–3170.

    Article  CAS  Google Scholar 

  14. Sloan, C. A., Chan, E. T., Davidson, J. M., Malladi, V. S., Strattan, J. S., Hitz, B. C., et al. (2016). ENCODE data at the ENCODE portal. Nucleic Acids Research, 44, D726–D732.

    Article  Google Scholar 

  15. Devigne, A., Ithurbide, S., Bouthier de la Tour, C., Passot, F., Mathieu, M., Sommer, S., et al. (2015). DdrO is an essential protein that regulates the radiation desiccation response and the apoptotic-like cell death in the radioresistant Deinococcus radiodurans bacterium. Molecular Microbiology, 96, 1069–1084.

    Article  CAS  Google Scholar 

  16. Wang, Y., Xu, Q., Lu, H., Lin, L., Wang, L., Xu, H., et al. (2015). Protease activity of PprI facilitates DNA damage response: Mn(2 +)-dependence and substrate sequence-specificity of the proteolytic reaction. PLoS ONE, 10, e0122071.

    Article  Google Scholar 

  17. Arora, S., Ayyar, B. V., & O’Kennedy, R. (2014). Affinity chromatography for antibody purification. Methods in Molecular Biology, 1129, 497–516.

    Article  CAS  Google Scholar 

  18. Pierce, J., & Suelter, C. H. (1977). An evaluation of the Coomassie brilliant blue G-250 dye-binding method for quantitative protein determination. Analytical Biochemistry, 81, 478–480.

    Article  CAS  Google Scholar 

  19. Tang, X., & Bruce, J. E. (2009). Chemical cross-linking for protein–protein interaction studies. Methods in Molecular Biology, 492, 283–293.

    Article  CAS  Google Scholar 

  20. Kagawa, W., Kagawa, A., Saito, K., Ikawa, S., Shibata, T., Kurumizaka, H., et al. (2008). Identification of a second DNA binding site in the human Rad52 protein. Journal of Biological Chemistry, 283, 24264–24273.

    Article  CAS  Google Scholar 

  21. Chan, T. M., Leung, K. S., Lee, K. H., Wong, M. H., Lau, T. C., & Tsui, S. K. (2012). Subtypes of associated protein–DNA (transcription factor–transcription factor binding site) patterns. Nucleic Acids Research, 40, 9392–9403.

    Article  CAS  Google Scholar 

  22. Bailly, C., Kluza, J., Martin, C., Ellis, T., & Waring, M. J. (2005). DNase I footprinting of small molecule binding sites on DNA. Methods in Molecular Biology, 288, 319–342.

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the National Natural Science Foundation of China (31210103904, 31370102, 31570058), the Natural Science Foundation of Zhejiang Province (LY13C010001) and the Public Project of Zhejiang Province (2014C33024) and the Project for Experimental Technology of Zhejiang University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Tian or Yuejin Hua.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Additional information

Liangyan Wang and Huizhi Lu have contributed equally to the paper as first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Lu, H., Wang, Y. et al. An Improved Method for Identifying Specific DNA-Protein-Binding Sites In Vitro. Mol Biotechnol 59, 59–65 (2017). https://doi.org/10.1007/s12033-017-9993-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-017-9993-y

Keywords

Navigation