Advertisement

Molecular Biotechnology

, Volume 60, Issue 2, pp 154–168 | Cite as

Plant-Mediated Synthesis and Applications of Iron Nanoparticles

  • Alireza EbrahiminezhadEmail author
  • Alireza Zare-Hoseinabadi
  • Ajit K. Sarmah
  • Saeed Taghizadeh
  • Younes Ghasemi
  • Aydin BerenjianEmail author
Review

Abstract

Nanoscale iron particles have attracted substantial interest due to their unique physical and chemical properties. Over the years, various physical and chemical methods have been developed to synthesize these nanostructures which are usually expensive and potentially harmful to human health and the environment. Synthesis of iron nanoparticles (INPs) by using plant extract is now of great interest in order to develop a novel and sustainable approach toward green chemistry. In this method the chemical compounds and organic solvents are replaced with phytochemicals and aqueous matrixes, respectively. Similar to any chemical and biochemical reaction, factors such as reaction temperature, concentration of iron precursor, concentration of leaf extract, and reaction time have critical effects on the reaction yield. This review focuses on the novel approaches used for green synthesis of INPs by using plant resources. The currently available statistics including the factors affecting the synthesis process and potential applications of the fabricated nanoparticles are discussed. Recommendations are also given for areas of future research in order to improve the production process.

Keywords

Biosynthesis Eco-friendly Environmental friendly Green chemistry Green synthesis Metal nanoparticles 

Notes

Acknowledgements

This work is support by the University of Waikato, New Zealand, and Fasa University of Medical Sciences, Fasa, Iran.

References

  1. 1.
    Ebrahiminezhad, A., Rasoul-Amini, S., Davaran, S., Barar, J., & Ghasemi, Y. (2014). Impacts of iron oxide nanoparticles on the invasion power of Listeria monocytogenes. Current Nanoscience, 10(3), 382–388.CrossRefGoogle Scholar
  2. 2.
    Ebrahiminezhad, A., Rasoul-Amini, S., Kouhpayeh, A., Davaran, S., Barar, J., & Ghasemi, Y. (2015). Impacts of amine functionalized iron oxide nanoparticles on HepG2 cell line. Current Nanoscience, 11(1), 113–119.CrossRefGoogle Scholar
  3. 3.
    Herlekar, M., Barve, S., & Kumar, R. (2014). Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticle Research, 2014, 1–9.CrossRefGoogle Scholar
  4. 4.
    Parida, U. K., Bindhani, B. K., & Nayak, P. (2011). Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract. World Journal of Nano Science and Engineering, 1(04), 93.CrossRefGoogle Scholar
  5. 5.
    Ebrahiminezhad, A., Najafipour, S., Kouhpayeh, A., Berenjian, A., Rasoul-Amini, S., & Ghasemi, Y. (2014). Facile fabrication of uniform hollow silica microspheres using a novel biological template. Colloids and Surfaces B, 118, 249–253.CrossRefGoogle Scholar
  6. 6.
    Ebrahiminezhad, A., Bagheri, M., Taghizadeh, S., Berenjian, A., & Ghasemi, Y. (2016). Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7, 015018.Google Scholar
  7. 7.
    Ebrahimi, N., Rasoul-Amini, S., Niazi, A., Erfani, N., Moghadam, A., Ebrahiminezhad, A., et al. (2016). Cytotoxic and apoptotic effects of three types of silver-iron oxide binary hybrid nanoparticles. Current Pharmaceutical Biotechnology, 17(12), 1049–1057.CrossRefGoogle Scholar
  8. 8.
    Reguyal, F., Sarmah, A. K., & Gao, W. (2017). Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution. Journal of Hazardous Materials, 321, 868–878.CrossRefGoogle Scholar
  9. 9.
    Huber, D. L. (2005). Synthesis, properties, and applications of iron nanoparticles. Small (Weinheim an der Bergstrasse, Germany), 1(5), 482–501.CrossRefGoogle Scholar
  10. 10.
    Guo, J., Wang, R., Tjiu, W. W., Pan, J., & Liu, T. (2012). Synthesis of Fe nanoparticles@ graphene composites for environmental applications. Journal of Hazardous Materials, 225, 63–73.CrossRefGoogle Scholar
  11. 11.
    Babay, S., Mhiri, T., & Toumi, M. (2015). Synthesis, structural and spectroscopic characterizations of maghemite γ-Fe2O3 prepared by one-step coprecipitation route. Journal of Molecular Structure, 1085, 286–293.CrossRefGoogle Scholar
  12. 12.
    Saleh, N., Kim, H.-J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2008). Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environmental Science & Technology, 42(9), 3349–3355.CrossRefGoogle Scholar
  13. 13.
    Kim, H. J., Kim, D. G., Yoon, H., Choi, Y. S., Yoon, J., & Lee, J. C. (2015). Polyphenol/feIII complex coated membranes having multifunctional properties prepared by a one-step fast assembly. Advanced Materials Interfaces.  https://doi.org/10.1002/admi.201500298.Google Scholar
  14. 14.
    Yang, L., Cao, Z., Sajja, H. K., Mao, H., Wang, L., Geng, H., et al. (2008). Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. Journal of Biomedical Nanotechnology, 4(4), 439–449.CrossRefGoogle Scholar
  15. 15.
    Ebrahimi, N., Rasoul-Amini, S., Ebrahiminezhad, A., Ghasemi, Y., Gholami, A., & Seradj, H. (2016). Comparative study on characteristics and cytotoxicity of bifunctional magnetic-silver nanostructures: Synthesized using three different reducing agents. Acta Metallurgica Sinica (English Letters), 29(4), 326–334.CrossRefGoogle Scholar
  16. 16.
    Laurent, S., Dutz, S., Häfeli, U. O., & Mahmoudi, M. (2011). Magnetic fluid hyperthermia: Focus on super paramagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 166(1), 8–23.CrossRefGoogle Scholar
  17. 17.
    Hilger, I., Hiergeist, R., Hergt, R., Winnefeld, K., Schubert, H., & Kaiser, W. A. (2002). Thermal ablation of tumors using magnetic nanoparticles: An in vivo feasibility study. Investigative Radiology, 37(10), 580–586.CrossRefGoogle Scholar
  18. 18.
    Pan, Y., Du, X., Zhao, F., & Xu, B. (2012). Magnetic nanoparticles for the manipulation of proteins and cells. Chemical Society Reviews, 41(7), 2912–2942.CrossRefGoogle Scholar
  19. 19.
    Dobson, J. (2006). Gene therapy progress and prospects: Magnetic nanoparticle-based gene delivery. Gene Therapy, 13(4), 283–287.CrossRefGoogle Scholar
  20. 20.
    Lee, N., & Hyeon, T. (2012). Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chemical Society Reviews, 41(7), 2575–2589.CrossRefGoogle Scholar
  21. 21.
    Busolo, M. A., & Lagaron, J. M. (2012). Oxygen scavenging polyolefin nanocomposite films containing an iron modified kaolinite of interest in active food packaging applications. Innovative Food Science and Emerging Technologies, 16, 211–217.CrossRefGoogle Scholar
  22. 22.
    Ebrahiminezhad, A., Varma, V., Yang, S., Ghasemi, Y., & Berenjian, A. (2015). Synthesis and application of amine functionalized iron oxide nanoparticles on menaquinone-7 fermentation: A step towards process intensification. Nanomaterials, 6(1), 1–9.CrossRefGoogle Scholar
  23. 23.
    Ebrahiminezhad, A., Varma, V., Yang, S., & Berenjian, A. (2016). Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Applied Microbiology and Biotechnology, 100(1), 173–180.CrossRefGoogle Scholar
  24. 24.
    Ebrahiminezhad, A., Davaran, S., Rasoul-Amini, S., Barar, J., Moghadam, M., & Ghasemi, Y. (2012). Synthesis, characterization and anti-listeria monocytogenes effect of amino acid coated magnetite nanoparticles. Current Nanoscience, 8(6), 868–874.CrossRefGoogle Scholar
  25. 25.
    Yang, H.-H., Zhang, S.-Q., Chen, X.-L., Zhuang, Z.-X., Xu, J.-G., & Wang, X.-R. (2004). Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Analytical Chemistry, 76(5), 1316–1321.CrossRefGoogle Scholar
  26. 26.
    Bautista, M., Bomati-Miguel, O., Zhao, X., Morales, M., Gonzalez-Carreno, T., de Alejo, R. P., et al. (2004). Comparative study of ferrofluids based on dextran-coated iron oxide and metal nanoparticles for contrast agents in magnetic resonance imaging. Nanotechnology, 15(4), S154–S159.CrossRefGoogle Scholar
  27. 27.
    Poursaberi, T., Hassanisadi, M., & Nourmohammadian, F. (2012). Application of synthesized nanoscale zero-valent iron in the treatment of dye solution containing basic yellow 28. Progress in Color, Colorants and Coatings Journal, 5, 35–40.Google Scholar
  28. 28.
    Grinbom, G., Duveau, D., Gershinsky, G., Monconduit, L., & Zitoun, D. (2015). Silicon/hollow γ-fe2o3 nanoparticles as efficient anodes for li-ion batteries. Chemistry of Materials, 27(7), 2703–2710.CrossRefGoogle Scholar
  29. 29.
    Dengxin, L., Guolong, G., Fanling, M., & Chong, J. (2008). Preparation of nano-iron oxide red pigment powders by use of cyanided tailings. Journal of Hazardous Materials, 155(1), 369–377.CrossRefGoogle Scholar
  30. 30.
    Panigrahi, S., Kundu, S., Ghosh, S., Nath, S., & Pal, T. (2004). General method of synthesis for metal nanoparticles. Journal of Nanoparticle Research, 6(4), 411–414.CrossRefGoogle Scholar
  31. 31.
    X-q, Li, Elliott, D. W., & Zhang, W.-X. (2006). Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences, 31(4), 111–122.CrossRefGoogle Scholar
  32. 32.
    Hoeppener, S., Maoz, R., Cohen, S. R., Chi, L., Fuchs, H., & Sagiv, J. (2002). Metal nanoparticles, nanowires, and contact electrodes self-assembled on patterned monolayer templates—A bottom-up chemical approach. Advanced Materials, 14(15), 1036–1041.CrossRefGoogle Scholar
  33. 33.
    Mahakham, W., Theerakulpisut, P., Maensiri, S., Phumying, S., & Sarmah, A. K. (2016). Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Science of the Total Environment, 573, 1089–1102.CrossRefGoogle Scholar
  34. 34.
    Kianpour, S., Ebrahiminezhad, A., Mohkam, M., Tamaddon, A. M., Dehshahri, A., Heidari, R., et al. (2016). Physicochemical and biological characteristics of the nanostructured polysaccharide-iron hydrogel produced by microorganism Klebsiella oxytoca. Journal of Basic Microbiology, 57(2), 132–140.CrossRefGoogle Scholar
  35. 35.
    Mahdavi, M., Namvar, F., Ahmad, M. B., & Mohamad, R. (2013). Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 18(5), 5954–5964.CrossRefGoogle Scholar
  36. 36.
    Makarov, V., Love, A., Sinitsyna, O., Makarova, S., Yaminsky, I., Taliansky, M., et al. (2014). “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 6(1(20)), 35–44.Google Scholar
  37. 37.
    Kozma, G., Rónavári, A., Kónya, Z., & Kukovecz, A. (2015). Environmentally benign synthesis methods of zero-valent iron nanoparticles. ACS Sustainable Chemistry & Engineering, 4(1), 291–297.CrossRefGoogle Scholar
  38. 38.
    Nadagouda, M. N., & Varma, R. S. (2008). Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chemistry, 10(8), 859–862.CrossRefGoogle Scholar
  39. 39.
    Cruz, D., Falé, P. L., Mourato, A., Vaz, P. D., Luisa Serralheiro, M., & Lino, A. R. L. (2010). Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids and Surfaces B, 81(1), 67–73.CrossRefGoogle Scholar
  40. 40.
    Vivekanandhan, S., Schreiber, M., Mason, C., Mohanty, A. K., & Misra, M. (2014). Maple leaf (Acer sp.) extract mediated green process for the functionalization of ZnO powders with silver nanoparticles. Colloids Surface B, 113(2014), 169–175.CrossRefGoogle Scholar
  41. 41.
    Y-y, Mo, Y-k, Tang, S-y, Wang, J-m, Ling, H-b, Zhang, & D-y, Luo. (2015). Green synthesis of silver nanoparticles using eucalyptus leaf extract. Materials Letters, 144, 165–167.CrossRefGoogle Scholar
  42. 42.
    Kahrilas, G. A., Wally, L. M., Fredrick, S. J., Hiskey, M., Prieto, A. L., & Owens, J. E. (2013). Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustainable Chemistry & Engineering, 2(3), 367–376.CrossRefGoogle Scholar
  43. 43.
    Njagi, E. C., Huang, H., Stafford, L., Genuino, H., Galindo, H. M., Collins, J. B., et al. (2010). Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 27(1), 264–271.CrossRefGoogle Scholar
  44. 44.
    Sathishkumar, M., Sneha, K., Won, S., Cho, C.-W., Kim, S., & Yun, Y.-S. (2009). Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids and Surfaces B, 73(2), 332–338.CrossRefGoogle Scholar
  45. 45.
    Sathishkumar, M., Sneha, K., & Yun, Y.-S. (2010). Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresource Technology, 101(20), 7958–7965.CrossRefGoogle Scholar
  46. 46.
    Ghaffari-Moghaddam, M., & Hadi-Dabanlou, R. (2014). Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract. Journal of Industrial and Engineering Chemistry, 20(2), 739–744.CrossRefGoogle Scholar
  47. 47.
    Ghaffari-Moghaddam, M., Hadi-Dabanlou, R., Khajeh, M., Rakhshanipour, M., & Shameli, K. (2014). Green synthesis of silver nanoparticles using plant extracts. Korean Journal of Chemical Engineering, 31(4), 548–557.CrossRefGoogle Scholar
  48. 48.
    Rajasekharreddy, P., & Rani, P. U. (2014). Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells. Materials Science and Engineering: C, 39, 203–212.CrossRefGoogle Scholar
  49. 49.
    Reddy, N. J., Nagoor Vali, D., Rani, M., & Rani, S. S. (2014). Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Materials Science and Engineering C, 34, 115–122.CrossRefGoogle Scholar
  50. 50.
    Kumar, A., & Singhal, A. (2009). Synthesis of colloidal silver iron oxide nanoparticles—Study of their optical and magnetic behavior. Nanotechnology, 20(29), 295606.CrossRefGoogle Scholar
  51. 51.
    Kumar, B., Smita, K., Cumbal, L., & Angulo, Y. (2015). Fabrication of silver nanoplates using Nephelium lappaceum (Rambutan) peel: A sustainable approach. Journal of Molecular Liquids, 211, 476–480.CrossRefGoogle Scholar
  52. 52.
    Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Sacha inchi (Plukenetia volubilis L.) oil for one pot synthesis of silver nanocatalyst: An ecofriendly approach. Industrial Crops and Products, 58, 238–243.CrossRefGoogle Scholar
  53. 53.
    Khoei, S., Azarian, M., & Khoee, S. (2012). Effect of hyperthermia and triblock copolymeric nanoparticles as quercetin carrier on DU145 prostate cancer cells. Current Nanoscience, 8(5), 690–696.CrossRefGoogle Scholar
  54. 54.
    Ebrahiminezhad, A., Barzegar, Y., Ghasemi, Y., & Berenjian, A. (2016). Green synthesis and characterization of silver nanoparticles using Alcea rosea flower extract as a new generation of antimicrobials. Chemical Industry and Chemical Engineering Quarterly, 0, 2.Google Scholar
  55. 55.
    Ebrahiminezhad, A., Berenjian, A., & Ghasemi, Y. (2016). Template free synthesis of natural carbohydrates functionalised fluorescent silver nanoclusters. IET Nanobiotechnology, 2016, 1–4.Google Scholar
  56. 56.
    Dinali, R., Ebrahiminezhad, A., Manley-Harris, M., Ghasemi, Y., & Berenjian, A. (2017). Magnetic immobilization of bacteria using iron oxide nanoparticles. Biotechnology Letters.  https://doi.org/10.1007/s10529-017-2477-0.Google Scholar
  57. 57.
    Ebrahiminezhad, A., Taghizadeh, S., Berenjian, A., Heidaryan Naeini, F., & Ghasemi, Y. (2016). Green synthesis of silver nanoparticles capped with natural carbohydrates using Ephedra intermedia. Nanoscience & Nanotechnology-Asia, 6, 1–9.CrossRefGoogle Scholar
  58. 58.
    Ebrahiminezhad, A., Taghizadeh, S., & Ghasemi, Y. (2017). Green synthesis of silver nanoparticles using Mediterranean Cypress (Cupressus sempervirens) leaf extract. American Journal of Biochemistry and Biotechnology, 13(1), 1–6.CrossRefGoogle Scholar
  59. 59.
    Ebrahiminezhad, A., Ghasemi, Y., Rasoul-Amini, S., Barar, J., & Davaran, S. (2012). Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bulletin of the Korean Chemical Society, 33(12), 3957–3962.CrossRefGoogle Scholar
  60. 60.
    Ebrahiminezhad, A., Ghasemi, Y., Rasoul-Amini, S., Barar, J., & Davaran, S. (2013). Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids and Surfaces B, 1(102), 534–539.CrossRefGoogle Scholar
  61. 61.
    Gholami, A., Rasoul-Amini, S., Ebrahiminezhad, A., Abootalebi, N., Niroumand, U., Ebrahimi, N., et al. (2016). Magnetic properties and antimicrobial effect of amino and lipoamino acid coated iron oxide nanoparticles. Minerva Biotecnologica, 28(4), 177–186.Google Scholar
  62. 62.
    Gholami, A., Rasoul-amini, S., Ebrahiminezhad, A., Seradj, S. H., & Ghasemi, Y. (2015). Lipoamino acid coated superparamagnetic iron oxide nanoparticles concentration and time dependently enhanced growth of human hepatocarcinoma cell line (Hep-G2). Journal of Nanomaterials, 16(1), 150.Google Scholar
  63. 63.
    Njagi, E. C., Huang, H., Stafford, L., Genuino, H., Galindo, H. M., Collins, J. B., et al. (2011). Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 27(1), 264–271.CrossRefGoogle Scholar
  64. 64.
    Machado, S., Pacheco, J. G., Nouws, H. P., Albergaria, J. T., & Delerue-Matos, C. (2015). Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Science of the Total Environment, 15(533), 76–81.CrossRefGoogle Scholar
  65. 65.
    Jassal, V., Shanker, U., & Gahlot, S. (2016). Green synthesis of some iron oxide nanoparticles and their interaction with 2-amino, 3-amino and 4-aminopyridines. Materials Today, 3(6), 1874–1882.CrossRefGoogle Scholar
  66. 66.
    Harshiny, M., Iswarya, C. N., & Matheswaran, M. (2015). Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaf extract as a reducing agent. Powder Technology, 286, 744–749.CrossRefGoogle Scholar
  67. 67.
    Ehrampoush, M. H., Miria, M., Salmani, M. H., & Mahvi, A. H. (2015). Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. Journal of Environmental Health Science and Engineering, 13, 84.CrossRefGoogle Scholar
  68. 68.
    Latha, N., & Gowri, M. (2014). Bio synthesis and characterisation of Fe3O4 nanoparticles using Caricaya Papaya leaves extract. Synthesis, 3, 1551–1556.Google Scholar
  69. 69.
    Ebrahiminezhad, A., Zare-Hoseinabadi, A., Berenjian, A., & Ghasemi, Y. (2017). Green synthesis and characterization of zero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract. Green Processing and Synthesis, 6(5), 469–475.  https://doi.org/10.1515/gps-2016-0133.CrossRefGoogle Scholar
  70. 70.
    Makarov, V. V., Makarova, S. S., Love, A. J., Sinitsyna, O. V., Dudnik, A. O., Yaminsky, I. V., et al. (2014). Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir, 30(20), 5982–5988.CrossRefGoogle Scholar
  71. 71.
    Ali, I., Al-Othman, Z. A., & Alwarthan, A. (2016). Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of Ametryn from water. Journal of Molecular Liquids, 221, 1168–1174.CrossRefGoogle Scholar
  72. 72.
    Prasad, C., Gangadhara, S., & Venkateswarlu, P. (2015). Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity. Applied Nanoscience, 6(6), 797–802.CrossRefGoogle Scholar
  73. 73.
    Wang, T., Jin, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Science of the Total Environment, 1(466–467), 210–213.CrossRefGoogle Scholar
  74. 74.
    Prasad, A. S. (2016). Iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of Garlic Vine (Mansoa alliacea). Materials Science in Semiconductor Processing, 53, 79–83.CrossRefGoogle Scholar
  75. 75.
    Markova, Z., Novak, P., Kaslik, J., Plachtova, P., Brazdova, M., Jancula, D., et al. (2014). Iron (II, III)–Polyphenol complex nanoparticles derived from green tea with remarkable ecotoxicological impact. ACS Sustainable Chemistry & Engineering, 2(7), 1674–1680.CrossRefGoogle Scholar
  76. 76.
    Soliemanzadeh, A., Fekri, M., Bakhtiary, S., & Mehrizi, M. H. (2016). Biosynthesis of iron nanoparticles and their application in removing phosphorus from aqueous solutions. Chemical Ecology, 32(3), 286–300.CrossRefGoogle Scholar
  77. 77.
    Huang, L., Weng, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesis of iron nanoparticles by various tea extracts: Comparative study of the reactivity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 15(130), 295–301.CrossRefGoogle Scholar
  78. 78.
    Wang, C.-B., & Zhang, W.-X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 31(7), 2154–2156.CrossRefGoogle Scholar
  79. 79.
    Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356.CrossRefGoogle Scholar
  80. 80.
    Hoag, G. E., Collins, J. B., Holcomb, J. L., Hoag, J. R., Nadagouda, M. N., & Varma, R. S. (2009). Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry, 19(45), 8671–8677.CrossRefGoogle Scholar
  81. 81.
    Pattanayak, M., & Nayak, P. (2013). Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Azadirachta indica (Neem). World Journal of Nano Science and Engineering, 2(1), 06–09.Google Scholar
  82. 82.
    Machado, S., Pinto, S. L., Grosso, J. P., Nouws, H. P., Albergaria, J. T., & Delerue-Matos, C. (2013). Green production of zero-valent iron nanoparticles using tree leaf extracts. Science of the Total Environment, 15(445–446), 1–8.CrossRefGoogle Scholar
  83. 83.
    Xiao, Z., Yuan, M., Yang, B., Liu, Z., Huang, J., & Sun, D. (2016). Plant-mediated synthesis of highly active iron nanoparticles for Cr(VI) removal: Investigation of the leading biomolecules. Chemosphere, 150, 357–364.CrossRefGoogle Scholar
  84. 84.
    Machado, S., Grosso, J. P., Nouws, H. P., Albergaria, J. T., & Delerue-Matos, C. (2014). Utilization of food industry wastes for the production of zero-valent iron nanoparticles. Science of the Total Environment, 15(496), 233–240.CrossRefGoogle Scholar
  85. 85.
    Tartaj, P., del Puerto, Morales M., Veintemillas-Verdaguer, S., González-Carreño, T., & Serna, C. J. (2003). The preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 36(13), R182.CrossRefGoogle Scholar
  86. 86.
    Dinali, R., Ebrahiminezhad, A., Manley-Harris, M., Ghasemi, Y., & Berenjian, A. (2017). Iron oxide nanoparticles in modern microbiology and biotechnology. Critical Reviews in Microbiology, 43(4), 493–507.CrossRefGoogle Scholar
  87. 87.
    Gholami, A., Rasoul-amini, S., Ebrahiminezhad, A., Seradj, S. H., & Ghasemi, Y. (2015). Lipoamino acid coated superparamagnetic iron oxide nanoparticles concentration and time dependently enhanced growth of human hepatocarcinoma cell line (Hep-G2). Journal of Nanomaterials, 2015(45), 1–9.CrossRefGoogle Scholar
  88. 88.
    Kuang, Y., Wang, Q., Chen, Z., Megharaj, M., & Naidu, R. (2013). Heterogeneous fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. Journal of Colloid and Interface Science, 15(410), 67–73.CrossRefGoogle Scholar
  89. 89.
    Zhuang, Z., Huang, L., Wang, F., & Chen, Z. (2015). Effects of cyclodextrin on the morphology and reactivity of iron-based nanoparticles using Eucalyptus leaf extract. Industrial Crops and Products, 69, 308–313.CrossRefGoogle Scholar
  90. 90.
    Machala, L., Tuček, J., & Zboril, R. (2011). Polymorphous transformations of nanometric iron (III) oxide: A review. Chemistry of Materials, 23(14), 3255–3272.CrossRefGoogle Scholar
  91. 91.
    Martínez-Cabanas, M., López-García, M., Barriada, J. L., Herrero, R., & de Vicente, M. E. S. (2016). Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As (V) removal. Chemical Engineering Journal, 301, 83–91.CrossRefGoogle Scholar
  92. 92.
    Yu, L., Xi, S., Wei, C., Zhang, W., Du, Y., Yan, Q., et al. (2015). Superior lithium storage properties of β-FeOOH. Advanced Energy Materials.  https://doi.org/10.1002/aenm.201401517.CrossRefGoogle Scholar
  93. 93.
    Mohapatra, M., & Anand, S. (2010). Synthesis and applications of nano-structured iron oxides/hydroxides—A review. International Journal of Engineering Science and Technology, 2(8), 127–146.Google Scholar
  94. 94.
    Huang, L., Weng, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochimica Acta Part A: Molecular and Biomolecular, 117, 801–804.CrossRefGoogle Scholar
  95. 95.
    Wang, Z., Fang, C., & Megharaj, M. (2014). Characterization of iron–polyphenol nanoparticles synthesized by three plant extracts and their Fenton oxidation of azo dye. ACS Sustainable Chemistry & Engineering, 2(4), 1022–1025.CrossRefGoogle Scholar
  96. 96.
    Wang, Z., Fang, C., & Mallavarapu, M. (2015). Characterization of iron–polyphenol complex nanoparticles synthesized by Sage (Salvia officinalis) leaves. Environmental Technology & Innovation, 4, 92–97.CrossRefGoogle Scholar
  97. 97.
    Wang, Z. (2013). Iron complex nanoparticles synthesized by eucalyptus leaves. ACS Sustainable Chemistry & Engineering, 1(12), 1551–1554.CrossRefGoogle Scholar
  98. 98.
    Shahwan, T., Abu Sirriah, S., Nairat, M., Boyacı, E., Eroğlu, A. E., Scott, T. B., et al. (2011). Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal, 172(1), 258–266.CrossRefGoogle Scholar
  99. 99.
    Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. Journal of Saudi Chemical Society, 18(4), 364–369.CrossRefGoogle Scholar
  100. 100.
    Fazlzadeh, M., Rahmani, K., Zarei, A., Abdoallahzadeh, H., Nasiri, F., & Khosravi, R. (2016). A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Advanced Powder Technology, 28(1), 122–130.CrossRefGoogle Scholar
  101. 101.
    Niraimathee, V., Subha, V., Ravindran, R. E., & Renganathan, S. (2016). Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. International Journal of Environment and Sustainable Development, 15(3), 227–240.CrossRefGoogle Scholar
  102. 102.
    Kumar, B., Smita, K., Cumbal, L., Debut, A., Galeas, S., & Guerrero, V. H. (2016). Phytosynthesis and photocatalytic activity of magnetite (Fe3O4) nanoparticles using the Andean blackberry leaf. Materials Chemistry and Physics, 179, 310–315.CrossRefGoogle Scholar
  103. 103.
    Cao, D., Jin, X., Gan, L., Wang, T., & Chen, Z. (2016). Removal of phosphate using iron oxide nanoparticles synthesized by eucalyptus leaf extract in the presence of CTAB surfactant. Chemosphere, 159, 23–31.CrossRefGoogle Scholar
  104. 104.
    Muthukumar, H., & Matheswaran, M. (2015). Amaranthus spinosus leaf extract mediated FeO nanoparticles: Physicochemical traits, photocatalytic and antioxidant activity. ACS Sustainable Chem Eng., 3(12), 3149–3156.CrossRefGoogle Scholar
  105. 105.
    Al-Ruqeishi, M. S., Mohiuddin, T., & Al-Saadi, L. K. (2016). Green synthesis of iron oxide nanorods from deciduous Omani mango tree leaves for heavy oil viscosity treatment. Arabian Journal of Chemistry.  https://doi.org/10.1016/j.arabjc.2016.04.003.Google Scholar
  106. 106.
    Awwad, A. M., & Salem, N. M. (2012). A green and facile approach for synthesis of magnetite nanoparticles. Journal of Nanoscience and Nanotechnology, 2(6), 208–213.CrossRefGoogle Scholar
  107. 107.
    Ebrahiminezhad, A., Berenjian, A., & Ghasemi, Y. (2016). Template free synthesis of natural carbohydrates functionalised fluorescent silver nanoclusters. IET Nanobiotechnology, 2016, 1–4.Google Scholar
  108. 108.
    Ebrahiminezhad, A., Taghizadeh, S., Berenjiand, A., Rahi, A., & Ghasemi, Y. (2016). Synthesis and characterization of silver nanoparticles with natural carbohydrate capping using Zataria multiflora. Advanced Materials Letters, 7(6), 122–127.Google Scholar
  109. 109.
    Benzie, I. F., & Szeto, Y. (1999). Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. Journal of Agriculture and Food Chemistry, 47(2), 633–636.CrossRefGoogle Scholar
  110. 110.
    Pulido, R., Bravo, L., & Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agriculture and Food Chemistry, 48(8), 3396–3402.CrossRefGoogle Scholar
  111. 111.
    Conde, E., Cara, C., Moure, A., Ruiz, E., Castro, E., & Domínguez, H. (2009). Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning. Food Chemistry, 114(3), 806–812.CrossRefGoogle Scholar
  112. 112.
    Zhuang, Y., Ahn, S., & Luthy, R. G. (2010). Debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron: Pathways, kinetics, and reactivity. Environ SciTechnol., 44(21), 8236–8242.CrossRefGoogle Scholar
  113. 113.
    Rahmani, H., Gholami, M., Mahvi, A., Ali-Mohammadi, M., & Rahmani, K. (2014). Tinidazol antibiotic degradation in aqueous solution by zero valent iron nanoparticles and hydrogen peroxide in the presence of ultrasound radiation. Journal of Water Chemistry and Technology, 36(6), 317–324.CrossRefGoogle Scholar
  114. 114.
    Šimkovič, K., Derco, J., & Valičková, M. (2015). Removal of selected pesticides by nano zero-valent iron. Acta Chimica Slovenica, 8(2), 152–155.Google Scholar
  115. 115.
    Liu, Y., Li, S., Chen, Z., Megharaj, M., & Naidu, R. (2014). Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp. Chemosphere, 108, 426–432.CrossRefGoogle Scholar
  116. 116.
    Celebi, O., Üzüm, Ç., Shahwan, T., & Erten, H. (2007). A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. Journal of Hazardous Materials, 148(3), 761–767.CrossRefGoogle Scholar
  117. 117.
    Xiao, S., Ma, H., Shen, M., Wang, S., Huang, Q., & Shi, X. (2011). Excellent copper (II) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats. Colloids and Surfaces A, 381(1), 48–54.CrossRefGoogle Scholar
  118. 118.
    Singh, R., Misra, V., & Singh, R. P. (2011). Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. Journal of Nanoparticle Research, 13(9), 4063–4073.CrossRefGoogle Scholar
  119. 119.
    Üzüm, Ç., Shahwan, T., Eroğlu, A. E., Lieberwirth, I., Scott, T. B., & Hallam, K. R. (2008). Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chemical Engineering Journal, 144(2), 213–220.CrossRefGoogle Scholar
  120. 120.
    Wang, T., Lin, J., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. Journal of Cleaner Production, 83, 413–419.CrossRefGoogle Scholar
  121. 121.
    Mystrioti, C., Xanthopoulou, T., Tsakiridis, P., Papassiopi, N., & Xenidis, A. (2016). Comparative evaluation of five plant extracts and juices for nanoiron synthesis and application for hexavalent chromium reduction. Science of the Total Environment, 539, 105–113.CrossRefGoogle Scholar
  122. 122.
    Sulaiman, G. M., Tawfeeq, A. T., & Naji, A. S. (2017). Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. Artificial Cells, Nanomedicine, and Biotechnology, 21, 1–15.CrossRefGoogle Scholar
  123. 123.
    Vanitha, V., Hemalatha, S., Pushpabharathi, N., Amudha, P., Jayalakshmi, M. (Eds.) (2017). Fabrication of nanoparticles using Annona squamosa leaf and assessment of its effect on liver (Hep G2) cancer cell line. In IOP conference series: Materials science and engineering. IOP Publishing.Google Scholar
  124. 124.
    Nagajyothi, P., Pandurangan, M., Kim, D. H., Sreekanth, T., & Shim, J. (2017). Green synthesis of iron oxide nanoparticles and their catalytic and in vitro anticancer activities. Journal of Cluster Science, 28(1), 245–257.CrossRefGoogle Scholar
  125. 125.
    Naseem, T., & Farrukh, M. A. (2015). Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. Journal of Chemistry, 2015, 1–7.CrossRefGoogle Scholar
  126. 126.
    Khalil, A. T., Ovais, M., Ullah, I., Ali, M., Khan Shinwari, Z., & Maaza, M. (2017). Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chemistry Letters and Reviews, 10(4), 186–201.CrossRefGoogle Scholar
  127. 127.
    Ebrahiminezhad, A., Zare, M., Kiyanpour, S., Berenjian, A., Niknezhad, S. V., & Ghasemi, Y. (2017). Biosynthesis of xanthan gum coated iron nanoparticles by using Xanthomonas campestris. IET Nanobiotechnology.  https://doi.org/10.1049/iet-nbt.2017.0199.Google Scholar
  128. 128.
    Raveendran, P., Fu, J., & Wallen, S. L. (2003). Completely “green” synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society, 125(46), 13940–13941.CrossRefGoogle Scholar
  129. 129.
    Vikesland, P. J., Rebodos, R., Bottero, J., Rose, J., & Masion, A. (2016). Aggregation and sedimentation of magnetite nanoparticle clusters. Environmental Science: Nano, 3(3), 567–577.Google Scholar
  130. 130.
    Ebrahiminezhad, A., Taghizadeh, S., Ghasemi, Y., & Berenjian, A. (2017). Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material. Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2017.10.076.Google Scholar
  131. 131.
    Sun, Y. P., Xq, Li, Cao, J., Wx, Zhang, & Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120(1), 47–56.CrossRefGoogle Scholar
  132. 132.
    Shariati, S., Faraji, M., Yamini, Y., & Rajabi, A. A. (2011). Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions. Desalination—Journal, 270(1), 160–165.CrossRefGoogle Scholar
  133. 133.
    Rosická, D., & Šembera, J. (2013). Changes in the nanoparticle aggregation rate due to the additional effect of electrostatic and magnetic forces on mass transport coefficients. Nanoscale Research Letters, 8(1), 1–9.CrossRefGoogle Scholar
  134. 134.
    Park, J., An, K. J., Hwang, Y. S., Park, J. G., Noh, H. J., Kim, J. Y., et al. (2004). Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Materials, 3(12), 891–895.CrossRefGoogle Scholar
  135. 135.
    Yu, W. W., Chang, E., Sayes, C. M., Drezek, R., & Colvin, V. L. (2006). Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer. Nanotechnology, 17(17), 4483–4487.CrossRefGoogle Scholar
  136. 136.
    Sun, Y.-P., Li, X.-Q., Zhang, W.-X., & Wang, H. P. (2007). A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids and Surfaces A, 308(1), 60–66.CrossRefGoogle Scholar
  137. 137.
    Mohanpuria, P., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: Technological concepts and future applications. Journal of Nanoparticle Research, 10(3), 507–517.CrossRefGoogle Scholar
  138. 138.
    Cai, Y., Shen, Y., Xie, A., Li, S., & Wang, X. (2010). Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 322(19), 2938–2943.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Alireza Ebrahiminezhad
    • 1
    • 2
    • 3
    Email author
  • Alireza Zare-Hoseinabadi
    • 1
  • Ajit K. Sarmah
    • 4
  • Saeed Taghizadeh
    • 1
  • Younes Ghasemi
    • 2
    • 3
  • Aydin Berenjian
    • 5
    Email author
  1. 1.Department of Medical Biotechnology, School of Medicine, Non-communicable Diseases Research CentreFasa University of Medical SciencesFasaIran
  2. 2.Department of Medical Nanotechnology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
  3. 3.Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research CentreShiraz University of Medical SciencesShirazIran
  4. 4.Department of Civil and Environmental Engineering, Faculty of EngineeringThe University of AucklandAucklandNew Zealand
  5. 5.School of Engineering, Faculty of Science and EngineeringThe University of WaikatoHamiltonNew Zealand

Personalised recommendations