Skip to main content

Advertisement

Log in

Efficient One-Step Fusion PCR Based on Dual-Asymmetric Primers and Two-Step Annealing

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Gene splicing by fusion PCR is a versatile and widely used methodology, especially in synthetic biology. We here describe a rapid method for splicing two fragments by one-round fusion PCR with a dual-asymmetric primers and two-step annealing (ODT) method. During the process, the asymmetric intermediate fragments were generated in the early stage. Thereafter, they were hybridized in the subsequent cycles to serve as template for the target full-length product. The process parameters such as primer ratio, elongation temperature and cycle numbers were optimized. In addition, the fusion products produced with this method were successfully applied in seamless genome editing. The fusion of two fragments by this method takes less than 0.5 day. The method is expected to facilitate various kinds of complex genetic engineering projects with enhanced efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yamashita, M., Xu, J., Morokuma, D., Hirata, K., Hino, M., Mon, H., et al. (2017). Characterization of recombinant thermococcus kodakaraensis (kod) dna polymerases produced using silkworm-baculovirus expression vector system. Molecular Biotechnology, 59(6), 1–13.

    Article  Google Scholar 

  2. Brinster, R. L., Chen, H. Y., Trumbauer, M., Senear, A. W., Warren, R., & Palmiter, R. D. (1981). Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell, 27, 223–231.

    Article  CAS  Google Scholar 

  3. Yon, J., & Fried, M. (1989). Precise gene fusion by PCR. Nucleic Acids Research, 17, 4895.

    Article  CAS  Google Scholar 

  4. Swiech, L., Heidenreich, M., Banerjee, A., Habib, N., Li, Y., Trombetta, J., et al. (2015). In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nature Biotechnology, 33, 102–106.

    Article  CAS  Google Scholar 

  5. Zaslaver, A., Liani, I., Shtangel, O., Ginzburg, S., Yee, L., & Sternberg, P. W. (2015). Hierarchical sparse coding in the sensory system of Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 112, 1185–1189.

    Article  CAS  Google Scholar 

  6. Szewczyk, E., Nayak, T., Oakley, C. E., Edgerton, H., Xiong, Y., Taheri-Talesh, N., et al. (2006). Fusion PCR and gene targeting in Aspergillus nidulans. Nature Protocols, 1, 3111–3120.

    Article  CAS  Google Scholar 

  7. Liu, Y., Yang, M., Chen, J., Yan, D., Cheng, W., Wang, Y., et al. (2016). PCR-based seamless genome editing with high efficiency and fidelity in Escherichia coli. PLoS ONE, 11, e0149762.

    Article  Google Scholar 

  8. Heckman, K. L., & Pease, L. R. (2007). Gene splicing and mutagenesis by PCR-driven overlap extension. Nature Protocols, 2, 924–932.

    Article  CAS  Google Scholar 

  9. Sandhu, G. S., Aleff, R., & Kline, B. (1992). Dual asymmetric PCR: One-step construction of synthetic genes. BioTechniques, 12, 14–16.

    CAS  Google Scholar 

  10. Nakamura, M., Suzuki, A., Hoshida, H., & Akada, R. (2014). Minimum GC-rich sequences for overlap extension PCR and primer annealing. DNA Cloning and Assembly Methods, 1116, 165–181.

    Article  CAS  Google Scholar 

  11. Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6, 343–345.

    Article  CAS  Google Scholar 

  12. Li, M. Z., & Elledge, S. J. (2007). Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nature Methods, 4, 251–256.

    Article  CAS  Google Scholar 

  13. Lohff, C. J., & Cease, K. B. (1992). PCR using a thermostable polymerase with 3′ to 5′exonuclease activity generates blunt products suitable for direct cloning. Nucleic Acids Research, 20, 144.

    Article  CAS  Google Scholar 

  14. Liu, Y., Chen, S., Chen, J., Zhou, J., Wang, Y., Yang, M., et al. (2016). High production of fatty alcohols in Escherichia coli with fatty acid starvation. Microbial Cell Factories, 15, 129.

    Article  Google Scholar 

  15. Li, X.-T., Thomason, L. C., Sawitzke, J. A., & Costantino, N. (2013). Positive and negative selection using the tetA-sacB cassette: recombineering and P1 transduction in Escherichia coli. Nucleic Acids Research, 41, e204–e204.

    Article  CAS  Google Scholar 

  16. Takagi, M., Nishioka, M., Kakihara, H., Kitabayashi, M., Inoue, H., Kawakami, B., et al. (1997). Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR. Applied and Environmental Microbiology, 63, 4504–4510.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program (973 Program, 2011CBA00800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, J. & Thygesen, A. Efficient One-Step Fusion PCR Based on Dual-Asymmetric Primers and Two-Step Annealing. Mol Biotechnol 60, 92–99 (2018). https://doi.org/10.1007/s12033-017-0050-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-017-0050-7

Keywords

Navigation