Skip to main content

Advertisement

Log in

Tobacco Rattle Virus-Based Silencing of Enoyl-CoA Reductase Gene and Its Role in Resistance Against Cotton Wilt Disease

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A Tobacco rattle virus (TRV)-based virus-induced gene silencing assay was employed as a reverse genetic approach to study gene function in cotton (Gossypium hirsutum). This approach was used to investigate the function of the Enoyl-CoA reductase (GhECR) gene in pathogen defense. Amino acid sequence alignment of Arabidopsis ECR with homologous sequence from G. hirsutum, G. arboreum, G. herbaceum and G. barbadense showed that ECRs are highly conserved among these species. TRV-based silencing of GhECR gene in G. hirsutum induced a cell death/necrotic lesion-like phenotype. Reverse transcription polymerase chain reaction (RT-PCR) and real-time quantitative PCR showed reduced GhECR mRNA levels in TRV inoculated plants. Three isolates of Verticillium dahliae (V. dahliae) and Fusarium oxysporum f. sp. vasinfectum (FOV) were used to infect GhECR-silenced plants. Out of 6 races of 2 pathogens, down regulation of GhECR gene resulted in reduced resistance. This is the first report showing that cotton GhECR gene is involved in resistance to different strains of V. dahliae and FOV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Banuri, T. (1998). Pakistan: Environmental impact of cotton production and trade. Mimeographed, IISD.

  2. Innes, N. (1983). Bacterial blight of cotton. Biological Reviews, 58, 157–176.

    Article  Google Scholar 

  3. Briddon, R. W., & Markham, P. (2000). Cotton leaf curl virus disease. Virus Research, 71, 151–159.

    Article  CAS  Google Scholar 

  4. Chen, J.-Y., Xiao, H.-L., Gui, Y.-J., Zhang, D.-D., Li, L., Bao, Y.-M., et al. (2016). Characterization of the Verticillium dahliae exoproteome involves in pathogenicity from cotton-containing medium. Frontiers in Microbiology, 7, 1709.

    Google Scholar 

  5. Du, W.-S., Du, X.-M., & Ma, Z. (2002). Progress of inheritance and molecular biology of Verticillium wilt resistance in cotton. Cotton Science, 14, 55–61.

    Google Scholar 

  6. Cai, Y., Xiaohong, H., Mo, J., Sun, Q., Yang, J., & Liu, J. (2009). Molecular research and genetic engineering of resistance to Verticillium wilt in cotton: A review. African Journal of Biotechnology, 8, 7362–7372.

    Google Scholar 

  7. Bhat, R., & Subbarao, K. (1999). Host range specificity in Verticillium dahliae. Phytopathology, 89, 1218–1225.

    Article  CAS  Google Scholar 

  8. Klosterman, S. J., Atallah, Z. K., Vallad, G. E., & Subbarao, K. V. (2009). Diversity, pathogenicity, and management of Verticillium species. Annual review of Phytopathology, 47, 39–62.

    Article  CAS  Google Scholar 

  9. Fradin, E. F., & Thomma, B. P. (2006). Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular Plant Pathology, 7, 71–86.

    Article  CAS  Google Scholar 

  10. Ebbels, D. (1975). Fusarium wilt of cotton: A review, with special reference to Tanzania. Cotton Grower Review, 52, 295–339.

    Google Scholar 

  11. Bach, L., & Faure, J.-D. (2010). Role of very-long-chain fatty acids in plant development, when chain length does matter. Comptes Rendus Biologies, 333, 361–370.

    Article  CAS  Google Scholar 

  12. Cinti, D. L., Cook, L., Nagi, M. N., & Suneja, S. K. (1992). The fatty acid chain elongation system of mammalian endoplasmic reticulum. Progress in Lipid Research, 31, 1–51.

    Article  CAS  Google Scholar 

  13. Poulos, A. (1995). Very long chain fatty acids in higher animals—A review. Lipids, 30, 1–14.

    Article  CAS  Google Scholar 

  14. Moon, Y.-A., & Horton, J. D. (2003). Identification of two mammalian reductases involved in the two-carbon fatty acyl elongation cascade. Journal of Biological Chemistry, 278, 7335–7343.

    Article  CAS  Google Scholar 

  15. Gable, K., Garton, S., Napier, J. A., & Dunn, T. M. (2004). Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system. Journal of Experimental Botany, 55, 543–545.

    Article  CAS  Google Scholar 

  16. Zheng, H., Rowland, O., & Kunst, L. (2005). Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell, 17, 1467–1481.

    Article  CAS  Google Scholar 

  17. Baulcombe, D. (2004). RNA silencing in plants. Nature, 431, 356–363.

    Article  CAS  Google Scholar 

  18. Li, F., Fan, G., Wang, K., Sun, F., Yuan, Y., Song, G., et al. (2014). Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics, 46, 567–572.

    Article  CAS  Google Scholar 

  19. Zhang, T., Hu, Y., Jiang, W., Fang, L., Guan, X., Chen, J., et al. (2015). Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 33, 531–537.

    Article  CAS  Google Scholar 

  20. Paterson, A. H., Wendel, J. F., Gundlach, H., Guo, H., Jenkins, J., Jin, D., et al. (2012). Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 492, 423–427.

    Article  CAS  Google Scholar 

  21. Yuan, D., Tang, Z., Wang, M., Gao, W., Tu, L., Jin, X., et al. (2015). The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Scientific Reports, 5, 17662.

    Article  CAS  Google Scholar 

  22. Mustafa, R., Shafiq, M., Mansoor, S., Briddon, R. W., Scheffler, B. E., Scheffler, J., et al. (2016). Virus-induced gene silencing in cultivated cotton (Gossypium spp.) using tobacco rattle virus. Molecular Biotechnology, 58, 65–72.

    Article  CAS  Google Scholar 

  23. Gao, X., Wheeler, T., Li, Z., Kenerley, C. M., He, P., & Shan, L. (2011). Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant Journal, 66, 293–305.

    Article  CAS  Google Scholar 

  24. Gao, X., Li, F., Li, M., Kianinejad, A. S., Dever, J. K., Wheeler, T. A., et al. (2013). Cotton GhBAK1 mediates Verticillium wilt resistance and cell death. Journal of Integrative Plant Biology, 55, 586–596.

    Article  CAS  Google Scholar 

  25. Duan, X., Zhang, Z., Wang, J., & Zuo, K. (2016). Characterization of a novel cotton subtilase gene GbSBT1 in response to extracellular stimulations and its role in Verticillium resistance. PLoS ONE, 11, e0153988.

    Article  Google Scholar 

  26. Zhou, H., Fang, H., Sanogo, S., Hughs, S. E., Jones, D. C., & Zhang, J. (2014). Evaluation of Verticillium wilt resistance in commercial cultivars and advanced breeding lines of cotton. Euphytica, 196, 437–448.

    Article  Google Scholar 

  27. Zhang, B., Yang, Y., Chen, T., Yu, W., Liu, T., Li, H., et al. (2012). Island cotton Gbve1 gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae. PLoS ONE, 7, e51091.

    Article  CAS  Google Scholar 

  28. Djonovic, S., Pozo, M. J., Dangott, L. J., Howell, C. R., & Kenerley, C. M. (2006). Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Molecular Plant–Microbe Interactions, 19, 838–853.

    Article  CAS  Google Scholar 

  29. Liu, Y., Schiff, M., & Dinesh-Kumar, S. P. (2002). Virus-induced gene silencing in tomato. Plant Journal, 31, 777–786.

    Article  CAS  Google Scholar 

  30. Liu, Y., Schiff, M., Marathe, R., & Dinesh-Kumar, S. P. (2002). Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant Journal, 30, 415–429.

    Article  CAS  Google Scholar 

  31. Bejarano-Alcazar, J., Melero-Vara, J., Blanco-Lopez, M., & Jimenez-Diaz, R. (1995). Influence of inoculum density of defoliating and nondefoliating pathotypes of Verticillium dahliae on epidemics of Verticillium wilt of cotton in southern Spain. Phytopathology, 85, 1474–1481.

    Article  Google Scholar 

  32. Bejarano-Alcazar, J., Blanco-Lopez, M., Melero-Vara, J., & Jimenez-Diaz, R. (1997). The influence of Verticillium wilt epidemics on cotton yield in southern Spain. Plant Pathology, 46, 168–178.

    Article  Google Scholar 

  33. Schnathorst, W., & Mathre, D. (1966). Host range and differentiation of a severe form of Verticillium albo-atrum in cotton. Phytopathology, 56, 1155–1161.

    Google Scholar 

  34. de Jonge, R., van Esse, H. P., Maruthachalam, K., Bolton, M. D., Santhanam, P., Saber, M. K., et al. (2012). Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proceedings of the National Academy of Sciences USA, 109, 5110–5115.

    Article  Google Scholar 

  35. Armstrong, J., & Armstrong, G. (1958). A race of the cotton wilt Fusarium causing wilt of Yelredo soybean and flue-cured tobacco. Plant Disease Report, 42, 147–151.

    Google Scholar 

  36. Holmes, E., Bennett, R., Spurgeon, D., Colyer, P., & Davis, R. (2009). New genotypes of Fusarium oxysporum f. sp. vasinfectum from the southeastern United States. Plant Disease, 93, 1298–1304.

    Article  CAS  Google Scholar 

  37. Kim, Y., Hutmacher, R., & Davis, R. (2005). Characterization of California isolates of Fusarium oxysporum f. sp. vasinfectum. Plant Disease, 89, 366–372.

    Article  CAS  Google Scholar 

  38. Armstrong, G. M., & Armstrong, J. K. (1960). American, Egyptian, and Indian cotton-wilt fusaria: Their pathogenicity and relationship to other wilt fusaria, Technical bulletin no. 1219. Washington, DC: US Department of Agriculture.

    Google Scholar 

  39. Burch-Smith, T. M., Anderson, J. C., Martin, G. B., & Dinesh-Kumar, S. P. (2004). Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant Journal, 39, 734–746.

    Article  CAS  Google Scholar 

  40. Robertson, D. (2004). VIGS vectors for gene silencing: Many targets, many tools. Annual Review of Plant Biology, 55, 495–519.

    Article  CAS  Google Scholar 

  41. Costaglioli, P., Joubes, J., Garcia, C., Stef, M., Arveiler, B., Lessire, R., et al. (2005). Profiling candidate genes involved in wax biosynthesis in Arabidopsis thaliana by microarray analysis. Biochimica et Biophysica Acta, 1734, 247–258.

    Article  CAS  Google Scholar 

  42. Yang, Y., Ling, X., Chen, T., Cai, L., Liu, T., Wang, J., et al. (2015). A cotton Gbvdr5 gene encoding a leucine-rich-repeat receptor-like protein confers resistance to Verticillium dahliae in transgenic Arabidopsis and upland cotton. Plant Molecular Biology Reporter, 33, 987–1001.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Ping He (Department of Biochemistry and Biophysics, Institute of Plant Genomics and Biotechnology) and Dr. Libo Shan (Department of Plant Pathology and Microbiology) Texas A&M University for providing strains for fungal infections. A part of study is based upon work supported by Higher Education Commission (HEC) Govt. of Pakistan under the International Research Support Initiative Program (IRSIP). The study is in part supported by the “Pak-US cotton productivity enhancement program” of the International Center for Agricultural Research in the Dry Areas (ICARDA) funded by United States Department of Agriculture (USDA), Agricultural Research Service (ARS), under Agreement No. 58-6402-0-178F. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the USDA, ICARDA or HEC. The authors thank Dr. Rob Briddon for critical reading of the manuscript and suggestions for the improvements. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Contributions

RM, MH and HK did experimental work and RM wrote the first draft. SM and IA coordinated the research work. JS provided scientific and technical support. SM, IA and JS edited the paper. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Imran Amin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, R., Hamza, M., Kamal, H. et al. Tobacco Rattle Virus-Based Silencing of Enoyl-CoA Reductase Gene and Its Role in Resistance Against Cotton Wilt Disease. Mol Biotechnol 59, 241–250 (2017). https://doi.org/10.1007/s12033-017-0014-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-017-0014-y

Keywords

Navigation