Skip to main content
Log in

Medium Optimization for Improved Production of Dihydrolipohyl Dehydrogenase from Bacillus sphaericus PAD-91 in Escherichia coli

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Dihydrolipohyl dehydrogenase (DLD) is a FAD-dependent enzyme that catalyzes the reversible oxidation of dihydrolipoamide. Herein, we report medium optimization for the production of a recombinant DLD with NADH-dependent diaphorase activity from a strain of Bacillus sphaericus PAD-91. The DLD gene that consisted of 1413 bp was expressed in Escherichia coli BL21 (DE3), and its enzymatic properties were studied. The composition of production medium was optimized using one-variable-at-a-time method followed by response surface methodology (RSM). B. sphaericus DLD catalyzed the reduction of lipoamide by NAD+ and exhibited diaphorase activity. The molecular weight of enzyme was about 50 kDa and determined to be a monomeric protein. Recombinant diaphorase showed its optimal activity at temperature of 30 °C and pH 8.5. K m and V max values with NADH were estimated to be 0.025 mM and 275.8 U/mL, respectively. Recombinant enzyme was optimally produced in fermentation medium containing 10 g/L sucrose, 25 g/L yeast extract, 5 g/L NaCl and 0.25 g/L MgSO4. At these concentrations, the actual diaphorase activity was calculated to be 345.0 ± 4.1 U/mL. By scaling up fermentation from flask to bioreactor, enzyme activity was increased to 486.3 ± 5.5 U/mL. Briefly, a DLD with diaphorase activity from a newly isolated B. sphaericus PAD-91 was characterized and the production of recombinant enzyme was optimized using RSM technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liang-Jun, Y., Napporn, T., Nathalie, S., & Michael, J. F. (2013). Serum dihydrolipoamide dehydrogenase is a labile enzyme. Journal of Biochemical and Pharmacological Research, 1, 30–42.

    Google Scholar 

  2. Rachael, A. V., Pierre, R., & Grazia, I. (2011). Mutation in the dimer interface of dihydrolipoamide dehydrogenase promote site-specific oxidative damages in yeast and human cells. The Journal of Biological Chemistry, 286, 40232–40245.

    Article  Google Scholar 

  3. Serrano, A. (1992). Purification, characterization and function of dihydrolipoamide dehydrogenase from cyanobacterium Anabaena sp. strain P.C.C.7119. Biochemistry, 288, 823–830.

    Article  CAS  Google Scholar 

  4. Jacques, A. E. B., Willem, J. H. V. B., Walter, M. A. M. V. D., Franz, M., & Arie, D. K. (1989). Molecular cloning and sequence determination of the Ipd gene encoding lipoamide dehydrogenase from Pseudomonas flurescens. Journal of Generral Microbiology, 135, 1787–1797.

    Google Scholar 

  5. Madiagan, R. A., & Mayhew, S. G. (1993). Preparation of the apoenzyme of the FMN-dependent Clostridium kluyveri diaphorase by extraction with apofalvodoxin. Biochemical Society Transactions, 22, 578–585.

    Google Scholar 

  6. Tedeschi, G., Chen, S., & Massey, V. (1995). Active site studies of DT-diaphorase employing artificial flavins. The Journal of Biological Chemistry, 270, 2512–2516.

    Article  CAS  Google Scholar 

  7. Melanie, A. A., & Zongchao, J. (2006). Modulator of drug activity B from Escherichia coli: Crystal structure of a prokaryotic homologue of DT-diaphorase. Journal of Molecular Biology, 359, 455–465.

    Article  Google Scholar 

  8. Natalia, L. R., Valentina, A. S., Alexander, V. E., Seergey, V. K., Irina, G. G., Bruce, S. K., et al. (2006). pH-dependent substrate preference of pig heart lipoamide dehydrogenase varies with oligomeric state. The Journal of Biological Chemistry, 280, 16106–16114.

    Google Scholar 

  9. Cakraborty, S., Sakka, M., Kimura, T., & Sakka, K. (2008). Characterization of a dihydrolipoyl dehydrogenase having diaphorase activity of Clostridium kluyveri. Bioscience, Biotechnology, and Biochemistry, 72, 982–988.

    Article  Google Scholar 

  10. Antiochia, R., Cass, A. E. G., & Palleschi, G. (1997). Purification and sensor applications of an oxygen insensitive thermophilic diaphorase. Analytica Chimica Acta, 345, 17–28.

    Article  CAS  Google Scholar 

  11. Bhushan, H., & Spain, H. (2002). Diaphorase catalyzed biotransformation of RDX via N-denitration mechanism. Biochemical and Biophysical Research Communications, 296, 779–784.

    Article  CAS  Google Scholar 

  12. Shahbazmohammadi, H., & Omidinia, E. (2011). New enzymatic colorimetric method for the quantitative determination of phenylalanine in dry-blood spots. Journal of Sciences, 22, 15–20.

    Google Scholar 

  13. Kianmehr, A., Mahrooz, A., Ansari, J., Oladnabi, M., & Shahbazmohammadi, H. (2016). The rapid and sensitive quantitative determination of galactose by combined enzymatic and colorimetric method: Application in neonatal screening. Applied Biochemistry and Biotechnology, 179, 283–293.

    Article  CAS  Google Scholar 

  14. Zhen, H., Liu, Q., & Shao, Y. W. (2009). Medium optimization for the production of a novel bioflocculant from Halomonas sp. V3a using response surface methodology. Bioresource Technology, 100, 5922–5927.

    Article  Google Scholar 

  15. Zhang, H.-B., Mao, X.-Q., Wang, Y.-J., & Hu, X.-Q. (2009). Optimization of culture conditions for high-level expression of dextransucrase in Escherichia coli. The Journal of Food, Agriculture & Environment, 7, 75–78.

    CAS  Google Scholar 

  16. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1994). Molecular cloning: A laboratory manual (2nd ed., pp. 1847–1857). Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  17. Shahbazmohammadi, H., & Omidinia, E. (2012). Isolation, purification and characterization of proline dehydrogenase from a newly isolated Pseudomonas putida POS-F84. Iranian Journal of Biotechnology, 10, 111–119.

    Google Scholar 

  18. Argyrou, A., Sun, G., Palfey, B. A., & Blanchard, J. S. (2003). Catalysis of diaphorase reactions by Mycobacterium tuberculosis lipoamide dehydrogenase occurs at the EH4 level. Biochemistry, 42, 2218–2228.

    Article  CAS  Google Scholar 

  19. Boething, R. S., & Weaver, T. (1979). A new assay for diaphorase activity in reagent formulations, based on the reduction of thiazolyl blue. Clinical Chemistry, 25, 2040–2042.

    Google Scholar 

  20. Bradford, M. M. (1976). Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principles of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  21. Ki, J.-S., Zhang, W., & Qian, P.-Y. (2009). Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification. Journal of Microbiological Methods, 77, 48–57.

    Article  CAS  Google Scholar 

  22. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  23. Shahbazmohammadi, H., Mostafavi, S. S., Soleimani, S., Bozorgian, S., Pooraskari, M., & Kianmehr, A. (2015). Response surface methodology to optimize partition and purification of two recombinant oxidoreductase enzymes, glucose dehydrogenase and D-galactose dehydrogenase in aqueous two-phase systems. Protein Expression and Purification, 108, 41–47.

    Article  CAS  Google Scholar 

  24. Hasan-Beikdashti, M., Forootanfar, H., Safiarian, M. S., Ameri, A., Ghahremani, M. H., Khoshayand, M. R., et al. (2012). Optimization of culture conditions for production of lipase by a newly isolated bacterium Stenotrophomonas maltophilia. Journal of the Taiwan Institute of Chemical Engineers, 43, 670–677.

    Article  CAS  Google Scholar 

  25. Rajendran, A., & Thangavelu, V. (2009). Statistical experimental design for evaluation of medium components for lipase production by Rhizopus arrhizus MTCC 2233 LWT-Food. Science Technology, 42, 985–992.

    CAS  Google Scholar 

  26. Gupta, N., Mehra, G., & Gupta, R. (2004). A glycerol-inducible lipase from Bacillus sp.: Medium optimization by a Plackett-Burman design and by response surface methodology. Canadian Journal of Microbiology, 50, 361–368.

    Article  CAS  Google Scholar 

  27. Singh, J., Vohra, R. M., & Sahoo, D. K. (2004). Enhanced production of alkaline proteases by Bacillus sphaericus using fed-batch culture. Process Biochemistry, 39, 1093–1101.

    Article  CAS  Google Scholar 

  28. Gupta, N., Sahai, V., & Gupta, R. (2007). Alkaline lipase from a novel strain Burkholderia multivorans: Statistical medium optimization and production in a bioreactor. Process Biochemistry, 42, 518–526.

    Article  CAS  Google Scholar 

  29. Yongxian, F., Yang, Y., Xiaoqin, J., Xiaolong, C., & Yinchu, S. (2013). Cloning, expression and medium optimization of validamycin glycosyltransferase from Streptomyces hygroscopicus var. jinggangensis for the biotransformation of validoxylamine A to produce validamycin A using free resting cells. Bioresource Technology, 131, 13–20.

    Article  Google Scholar 

  30. Dinarvand, M., Rezaee, M., Masomian, M., Jazayeri, S. D., Zareian, M., Abbasi, S., et al. (2013). Effect of C/N Ratio and media optimization through response surface methodology on simultaneous productions of intra and extracellular inulinase and invertase from Aspergillus niger ATCC 20611. BioMed Research International, 2013, 1–13.

    Article  Google Scholar 

  31. Ruchi, G., Anshu, G., & Khare, S. K. (2008). Lipase from solvent tolerant Pseudomonas aeruginosa strain: Production optimization by response surface methodology and application. Bioresource Technology, 99, 4796–4802.

    Article  CAS  Google Scholar 

  32. Singh, S., Moholkar, V. S., & Goyal, A. (2014). Optimization of carboxymethylcellulase production from Bacillus amyloliquefaciens SS35. 3 Biotech, 4, 411–424.

  33. Sifour, M., Zaghloul, T. I., Saeed, H. M., Berekaa, M. M., & Abdel-Fattah, Y. R. (2010). Enhanced production of lipase by the thermophilic Geobacillus stearothermophilus strain-5 using statistical experimental designs. New Biotechnology, 27, 330–336.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research finding was from Department of Biochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eskandar Omidinia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Statement

This article does not contain any studies with human participants performed by any of the authors.

Human and Animal Rights Statement

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbazmohammadi, H., Omidinia, E. Medium Optimization for Improved Production of Dihydrolipohyl Dehydrogenase from Bacillus sphaericus PAD-91 in Escherichia coli . Mol Biotechnol 59, 260–270 (2017). https://doi.org/10.1007/s12033-017-0013-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-017-0013-z

Keywords

Navigation