Molecular Biotechnology

, Volume 58, Issue 12, pp 838–849 | Cite as

Effect of a Flexible Linker on Recombinant Expression of Cell-Penetrating Peptide Fusion Proteins and Their Translocation into Fungal Cells

  • Zifan Gong
  • Mackenzie T. Walls
  • Alisha N. Karley
  • Amy J. KarlssonEmail author
Original Paper


Cell-penetrating peptides (CPPs) are a class of small peptides that are able to cross cell membranes via direct translocation or endocytosis. They have been widely used to deliver tethered bioactive molecules to cells, but recombinantly producing CPPs as fusions to protein cargo leads to low yields. We used Escherichia coli cells to recombinantly produce genetic fusions of NPFSD (derived from a yeast endocytosis signal) and pVEC (derived from a murine vascular endothelium cadherin) to the N-terminus of green fluorescent protein (GFP) with and without a flexible glycine–serine linker between the CPP and GFP. The flexible linker improved the expression of the NPFSD construct and the pVEC construct, resulting in a 24.5 % improvement in yield for the NPFSD fusion and a 50.0 % improvement in yield for the pVEC fusion. The linker did not diminish the ability of the fusions to translocate into the fungal pathogen Candida albicans, and the translocation of the NPFSD constructs actually increased by 58 % at 10 min. Moreover, the toxicity of the fusions towards C. albicans was not affected by the incorporation of the linker. These results illustrate the utility of including a linker for CPP–cargo fusions and the potential of NPFSD and pVEC fusions for use in delivering protein cargo to C. albicans.


Cell-penetrating peptide Glycine–serine linker Protein fusion Cellular uptake Candida albicans Recombinant protein expression 



We thank Kirsten Smulovitz and Thomas Wescott for assistance with initial experiments. This work was supported by the National Science Foundation (CBET Award #1511718) and an Oak Ridge Associated Universities Ralph E. Powe Junior Faculty Enhancement Award.


  1. 1.
    Centers for Disease Control and Prevention. (2013) Antibiotic resistance threats in the United States. Retrieved September 2016, from
  2. 2.
    Cassone, A. (1989). Cell wall of Candida albicans: Its functions and its impact on the host. In M. R. McGinnis & M. Borgers (Eds.), Current topics in medical mycology (pp. 248–314). New York: Springer.CrossRefGoogle Scholar
  3. 3.
    Levitz, S. M. (2010). Innate recognition of fungal cell walls. PLoS Pathogens, 6, e1000758.CrossRefGoogle Scholar
  4. 4.
    Mae, M., & Langel, U. (2006). Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Current Opinion in Pharmacology, 6, 509–514.CrossRefGoogle Scholar
  5. 5.
    Jarver, P., Mager, I., & Langel, U. (2010). In vivo biodistribution and efficacy of peptide mediated delivery. Trends in Pharmacological Sciences, 31, 528–535.CrossRefGoogle Scholar
  6. 6.
    Wang, F., Wang, Y., Zhang, X., Zhang, W., Guo, S., & Jin, F. (2014). Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. Journal of Controlled Release, 174, 126–136.CrossRefGoogle Scholar
  7. 7.
    Stetsenko, D. A., & Gait, M. J. (2000). Efficient conjugation of peptides to oligonucleotides by “native ligation”. Journal of Organic Chemistry, 65, 4900–4908.CrossRefGoogle Scholar
  8. 8.
    Fisher, L., Soomets, U., Cortes Toro, V., Chilton, L., Jiang, Y., Langel, U., et al. (2004). Cellular delivery of a double-stranded oligonucleotide NFkappaB decoy by hybridization to complementary PNA linked to a cell-penetrating peptide. Gene Therapy, 11, 1264–1272.CrossRefGoogle Scholar
  9. 9.
    El-Andaloussi, S., Johansson, H., Magnusdottir, A., Jarver, P., Lundberg, P., & Langel, U. (2005). TP10, a delivery vector for decoy oligonucleotides targeting the Myc protein. Journal of Controlled Release, 110, 189–201.CrossRefGoogle Scholar
  10. 10.
    Zielinski, J., Kilk, K., Peritz, T., Kannanayakal, T., Miyashiro, K. Y., Eiriksdottir, E., et al. (2006). In vivo identification of ribonucleoprotein-RNA interactions. Proceedings of the National Academy of Sciences of the United States of America, 103, 1557–1562.CrossRefGoogle Scholar
  11. 11.
    Liu, Y., Yan, J., & Prausnitz, M. R. (2012). Can ultrasound enable efficient intracellular uptake of molecules? A retrospective literature review and analysis. Ultrasound in Medicine and Biology, 38, 876–888.CrossRefGoogle Scholar
  12. 12.
    Muratovska, A., & Eccles, M. R. (2004). Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Letters, 558, 63–68.CrossRefGoogle Scholar
  13. 13.
    Chiu, Y. L., Ali, A., Chu, C. Y., Cao, H., & Rana, T. M. (2004). Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chemistry & Biology, 11, 1165–1175.CrossRefGoogle Scholar
  14. 14.
    Wadia, J. S., Stan, R. V., & Dowdy, S. F. (2004). Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nature Medicine, 10, 310–315.CrossRefGoogle Scholar
  15. 15.
    Jain, M., Chauhan, S. C., Singh, A. P., Venkatraman, G., Colcher, D., & Batra, S. K. (2005). Penetratin improves tumor retention of single-chain antibodies: A novel step toward optimization of radioimmunotherapy of solid tumors. Cancer Research, 65, 7840–7846.Google Scholar
  16. 16.
    Cao, L. M., Si, J., Wang, W. Y., Zhao, X. R., Yuan, X. M., Zhu, H. F., et al. (2006). Intracellular localization and sustained prodrug cell killing activity of TAT-HSVTK fusion protein in hepatocelullar carcinoma cells. Molecules and Cells, 21, 104–111.Google Scholar
  17. 17.
    Theisen, D. M., Pongratz, C., Wiegmann, K., Rivero, F., Krut, O., & Kronke, M. (2006). Targeting of HIV-1 Tat traffic and function by transduction-competent single chain antibodies. Vaccine, 24, 3127–3136.CrossRefGoogle Scholar
  18. 18.
    Shokolenko, I. N., Alexeyev, M. F., LeDoux, S. P., & Wilson, G. L. (2005). TAT-mediated protein transduction and targeted delivery of fusion proteins into mitochondria of breast cancer cells. DNA Repair, 4, 511–518.CrossRefGoogle Scholar
  19. 19.
    Olson, E. S., Jiang, T., Aguilera, T. A., Nguyen, Q. T., Ellies, L. G., Scadeng, M., et al. (2010). Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proceedings of the National Academy of Sciences of the United States of America, 107, 4311–4316.CrossRefGoogle Scholar
  20. 20.
    Kameyama, S., Horie, M., Kikuchi, T., Omura, T., Takeuchi, T., Nakase, I., et al. (2006). Effects of cell-permeating peptide binding on the distribution of I-125-labeled Fab fragment in rats. Bioconjugate Chemistry, 17, 597–602.CrossRefGoogle Scholar
  21. 21.
    Rajarao, G. K., Nekhotiaeva, N., & Good, L. (2002). Peptide-mediated delivery of green fluorescent protein into yeasts and bacteria. FEMS Microbiology Letters, 215, 267–272.CrossRefGoogle Scholar
  22. 22.
    Holm, T., Netzereab, S., Hansen, M., Langel, U., & Hallbrink, M. (2005). Uptake of cell-penetrating peptides in yeasts. FEBS Letters, 579, 5217–5222.CrossRefGoogle Scholar
  23. 23.
    Parenteau, J., Klinck, R., Good, L., Langel, U., Wellinger, R. J., & Elela, S. A. (2005). Free uptake of cell-penetrating peptides by fission yeast. FEBS Letters, 579, 4873–4878.CrossRefGoogle Scholar
  24. 24.
    Palm, C., Netzerea, S., & Hallbrink, M. (2006). Quantitatively determined uptake of cell-penetrating peptides in non-mammalian cells with an evaluation of degradation and antimicrobial effects. Peptides, 27, 1710–1716.CrossRefGoogle Scholar
  25. 25.
    Munoz, A., Harries, E., Contreras-Valenzuela, A., Carmona, L., Read, N. D., & Marcos, J. F. (2013). Two functional motifs define the interaction, internalization and toxicity of the cell-penetrating antifungal peptide PAF26 on fungal cells. PLoS One, 8, e54813.CrossRefGoogle Scholar
  26. 26.
    Rajarao, G. K., Nekhotiaeva, N., & Good, L. (2003). The signal peptide NPFSD fused to ricin A chain enhances cell uptake and cytotoxicity in Candida albicans. Biochemical and Biophysical Research Communications, 301, 529–534.CrossRefGoogle Scholar
  27. 27.
    Marchione, R., Dayde, D., Lenormand, J. L., & Cornet, M. (2014). ZEBRA cell-penetrating peptide as an efficient delivery system in Candida albicans. Biotechnology Journal, 9, 1088–1094.CrossRefGoogle Scholar
  28. 28.
    Tan, P. K., Howard, J. P., & Payne, G. S. (1996). The sequence NPFXD defines a new class of endocytosis signal in Saccharomyces cerevisiae. Journal of Cell Biology, 135, 1789–1800.CrossRefGoogle Scholar
  29. 29.
    Elmquist, A., Lindgren, M., Bartfai, T., & Langel, U. (2001). VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Experimental Cell Research, 269, 237–244.CrossRefGoogle Scholar
  30. 30.
    Mager, I., Eiriksdottir, E., Langel, K., El Andaloussi, S., & Langel, U. (2010). Assessing the uptake kinetics and internalization mechanisms of cell-penetrating peptides using a quenched fluorescence assay. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1798, 338–343.CrossRefGoogle Scholar
  31. 31.
    Elmquist, A., Hansen, M., & Langel, U. (2006). Structure-activity relationship study of the cell-penetrating peptide pVEC. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1758, 721–729.CrossRefGoogle Scholar
  32. 32.
    Mueller, N. H., Ammar, D. A., & Petrash, J. M. (2013). Cell penetration peptides for enhanced entry of alphaB-crystallin into lens cells. Investigative Ophthalmology & Visual Science, 54, 2–8.CrossRefGoogle Scholar
  33. 33.
    Liu, J., Gaj, T., Patterson, J. T., Sirk, S. J., & Barbas, C. F., III. (2014). Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PloS One, 9(1), e85755.CrossRefGoogle Scholar
  34. 34.
    Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–384.CrossRefGoogle Scholar
  35. 35.
    Vargas, N., Alvarez-Cubela, S., Giraldo, J. A., Nieto, M., Fort, N. M., Cechin, S., et al. (2011). TAT-mediated transduction of MafA protein in utero results in enhanced pancreatic insulin expression and changes in islet morphology. PLoS One, 6, e22364.CrossRefGoogle Scholar
  36. 36.
    Dominguez-Bendala, J., Klein, D., Ribeiro, M., Ricordi, C., Inverardi, L., Pastori, R., et al. (2005). TAT-mediated neurogenin 3 protein transduction stimulates pancreatic endocrine differentiation in vitro. Diabetes, 54, 720–726.CrossRefGoogle Scholar
  37. 37.
    Lv, Q., Yang, X. Z., Fu, L. Y., Lu, Y. T., Lu, Y. H., Zhao, J., et al. (2015). Recombinant expression and purification of a MAP30-cell penetrating peptide fusion protein with higher anti-tumor bioactivity. Protein Expression and Purification, 111, 9–17.CrossRefGoogle Scholar
  38. 38.
    Michiue, H., Tomizawa, K., Wei, F. Y., Matsushita, M., Lu, Y. F., Ichikawa, T., et al. (2005). The NH2 terminus of influenza virus hemagglutinin-2 subunit peptides enhances the antitumor potency of polyarginine-mediated p53 protein transduction. Journal of Biological Chemistry, 280, 8285–8289.CrossRefGoogle Scholar
  39. 39.
    Skosyrev, V. S., Rudenko, N. V., Yakhnin, A. V., Zagranichny, V. E., Popova, L. I., Zakharov, M. V., et al. (2003). EGFP as a fusion partner for the expression and organic extraction of small polypeptides. Protein Expression and Purification, 27, 55–62.CrossRefGoogle Scholar
  40. 40.
    Guo, W. H., Cao, L., Jia, Z. J., Wu, G., Li, T., Lu, F. X., et al. (2011). High level soluble production of functional ribonuclease inhibitor in Escherichia coli by fusing it to soluble partners. Protein Expression and Purification, 77, 185–192.CrossRefGoogle Scholar
  41. 41.
    Rizk, M., Antranikian, G., & Elleuche, S. (2016). Influence of linker length variations on the biomass-degrading performance of heat-active enzyme chimeras. Molecular Biotechnology, 58, 268–279.CrossRefGoogle Scholar
  42. 42.
    Chen, X. Y., Zaro, J. L., & Shen, W. C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65, 1357–1369.CrossRefGoogle Scholar
  43. 43.
    Lu, P., & Feng, M. G. (2008). Bifunctional enhancement of a beta-glucanase-xylanase fusion enzyme by optimization of peptide linkers. Applied Microbiology and Biotechnology, 79, 579–587.CrossRefGoogle Scholar
  44. 44.
    Huston, J. S., Levinson, D., Mudgetthunter, M., Tai, M. S., Novotny, J., Margolies, M. N., et al. (1988). Protein engineering of antibody-binding sites—recovery of specific activity in an anti-digoxin single-chain Fv analog produced in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 85, 5879–5883.CrossRefGoogle Scholar
  45. 45.
    Bergeron, L. M., Gomez, L., Whitehead, T. A., & Clark, D. S. (2009). Self-renaturing enzymes: Design of an enzyme-chaperone chimera as a new approach to enzyme stabilization. Biotechnology and Bioengineering, 102, 1316–1322.CrossRefGoogle Scholar
  46. 46.
    Zhao, H. L., Yao, X. Q., Xue, C., Wang, Y., Xiong, X. H., & Liu, Z. M. (2008). Increasing the homogeneity, stability and activity of human serum albumin and interferon-alpha2b fusion protein by linker engineering. Protein Expression and Purification, 61, 73–77.CrossRefGoogle Scholar
  47. 47.
    Hu, W. G., Li, F., Yang, X. X., Li, Z., Xia, H. C., Li, G. D., et al. (2004). A flexible peptide linker enhances the immunoreactivity of two copies HBsAg preS1 (21-47) fusion protein. Journal of Biotechnology, 107, 83–90.CrossRefGoogle Scholar
  48. 48.
    Bai, Y., & Shen, W. C. (2006). Improving the oral efficacy of recombinant granulocyte colony-stimulating factor and transferrin fusion protein by spacer optimization. Pharmaceutical Research, 23, 2116–2121.CrossRefGoogle Scholar
  49. 49.
    Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., et al. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  50. 50.
    Richard, J. P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., Gait, M. J., et al. (2003). Cell-penetrating peptides: A reevaluation of the mechanism of cellular uptake. Journal of Biological Chemistry, 278, 585–590.CrossRefGoogle Scholar
  51. 51.
    Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675.CrossRefGoogle Scholar
  52. 52.
    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., & Prasher, D. C. (1994). Green fluorescent protein as a marker for gene-expression. Science, 263, 802–805.CrossRefGoogle Scholar
  53. 53.
    Trinh, R., Gurbaxani, B., Morrison, S. L., & Seyfzadeh, M. (2004). Optimization of codon pair use within the (GGGGS)(3) linker sequence results in enhanced protein expression. Molecular Immunology, 40, 717–722.CrossRefGoogle Scholar
  54. 54.
    Ueda, M., Manabe, Y., & Mukai, M. (2011). The high performance of 3XFLAG for target purification of a bioactive metabolite: A tag combined with a highly effective linker structure. Bioorganic & Medicinal Chemistry Letters, 21, 1359–1362.CrossRefGoogle Scholar
  55. 55.
    Argos, P. (1990). An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. Journal of Molecular Biology, 211, 943–958.CrossRefGoogle Scholar
  56. 56.
    Silacci, M., Baenziger-Tobler, N., Lembke, W., Zha, W., Batey, S., Bertschinger, J., et al. (2014). Linker length matters, fynomer-Fc fusion with an optimized linker displaying picomolar IL-17A inhibition potency. Journal of Biological Chemistry, 289, 14392–14398.CrossRefGoogle Scholar
  57. 57.
    Neuner, P., Gallo, P., Orsatti, L., Fontana, L., & Monaci, P. (2003). An efficient and versatile synthesis of bisPNA-peptide conjugates based on chemoselective oxime formation. Bioconjugate Chemistry, 14, 276–281.CrossRefGoogle Scholar
  58. 58.
    Bar-Even, A., Paulsson, J., Maheshri, N., Carmi, M., O’Shea, E., Pilpel, Y., et al. (2006). Noise in protein expression scales with natural protein abundance. Nature Genetics, 38, 636–643.CrossRefGoogle Scholar
  59. 59.
    Mager, I., Langel, K., Lehto, T., Eiriksdottir, E., & Langel, U. (2012). The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1818, 502–511.CrossRefGoogle Scholar
  60. 60.
    Vaara, M. (1992). Agents that increase the permeability of the outer-membrane. Microbiological Reviews, 56, 395–411.Google Scholar
  61. 61.
    Lindgren, M., & Langel, Ü. (2011). Classes and prediction of cell-penetrating peptides. In Ü. Langel (Ed.), Cell-penetrating peptides: Methods and protocols (pp. 3–19). Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  62. 62.
    Saar, K., Lindgren, M., Hansen, M., Eiriksdottir, E., Jiang, Y., Rosenthal-Aizman, K., et al. (2005). Cell-penetrating peptides: a comparative membrane toxicity study. Analytical Biochemistry, 345, 55–65.CrossRefGoogle Scholar
  63. 63.
    Kapust, R. B., & Waugh, D. S. (2000). Controlled intracellular processing of fusion proteins by TEV protease. Protein Expression and Purification, 19, 312–318.CrossRefGoogle Scholar
  64. 64.
    Wriggers, W., Chakravarty, S., & Jennings, P. A. (2005). Control of protein functional dynamics by peptide linkers. Biopolymers, 80, 736–746.CrossRefGoogle Scholar
  65. 65.
    Zorko, M., & Langel, U. (2005). Cell-penetrating peptides: Mechanism and kinetics of cargo delivery. Advanced Drug Delivery Reviews, 57, 529–545.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zifan Gong
    • 1
  • Mackenzie T. Walls
    • 1
  • Alisha N. Karley
    • 1
  • Amy J. Karlsson
    • 1
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations