Skip to main content

Advertisement

Log in

Development of a Low-Cost Stem-Loop Real-Time Quantification PCR Technique for EBV miRNA Expression Analysis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are short, single stranded, non-coding RNA molecules. They are produced by many different species and are key regulators of several physiological processes. miRNAs are also encoded by the genomes of multiple virus families, such as herpesvirus family. In particular, miRNAs from Epstein Barr virus were found at high concentrations in different associated pathologies, such as Burkitt’s lymphoma, Hodgkin disease, and nasopharyngeal carcinoma. Thanks to their stability, these molecules could possibly serve as biomarkers for EBV-associated diseases. In this study, a stem-loop real-time PCR for miR-BART2-5p, miR-BART15, and miR-BART22 EBV miRNAs detection and quantification has been developed. Evaluation of these miRNAs in 31 serum samples (12 from patients affected by primary immunodeficiency, 9 from X-linked agammaglobulinemia and 10 from healthy subjects) has been carried out. The amplification performance showed a wide dynamic range (108–102 copies/reaction) and sensibility equal to 102 copies/reaction for all the target tested. Serum samples analysis, on the other hand, showed a statistical significant higher level of miR-BART22 in primary immunodeficiency patients (P = 0.0001) compared to other groups and targets. The results confirmed the potential use of this assay as a tool for monitoring EBV-associated disease and for miRNAs expression profile analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ghildiyal, M., & Zamore, P. D. (2009). Small silencing RNAs: an expanding universe. Nature Reviews Genetics, 10, 94–108.

    Article  CAS  Google Scholar 

  2. Baltimore, D., Boldin, M. P., O’Connell, R. M., Rao, D. S., & Taganov, K. D. (2008). MicroRNAs: new regulators of immune cell development and function. Nature Immunology, 9, 839–845.

    Article  CAS  Google Scholar 

  3. Ivey, K. N., & Srivastava, D. (2010). MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell, 7, 36–41.

    Article  CAS  Google Scholar 

  4. Tili, E., Michaille, J. J., Costinean, S., & Croce, C. M. (2008). MicroRNAs, the immune system and rheumatic disease. Nature Clinical Practice Rheumatology, 4, 534–541.

    Article  CAS  Google Scholar 

  5. Di Leva, G., & Croce, C. M. (2010). Roles of small RNAs in tumor formation. Trends in Molecular Medicine, 16, 257–267.

    Article  Google Scholar 

  6. Du, L., & Pertsemlidis, A. (2011). Cancer and neurodegenerative disorders: pathogenic convergence through microRNA regulation. Journal of Molecular Cell Biology, 3, 176–180.

    Article  CAS  Google Scholar 

  7. Kincaid, R. P., & Sullivan, C. S. (2012). Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathogens, 8(12), e1003018.

    Article  CAS  Google Scholar 

  8. Umbach, J. L., Nagel, M. A., Cohrs, R. J., Gilden, D. H., & Cullen, B. R. (2009). Analysis of human alpha herpesvirus microRNA expression in latently infected human trigeminal ganglia. Journal of Virology, 83, 10677–10683.

    Article  CAS  Google Scholar 

  9. Harwig, A., Das, A. T., & Berkhout, B. (2015). HIV-1 RNAs: sense and antisense, large mRNAs and small siRNAs and miRNAs. Current Opinion in HIV and AIDS, 10, 103–109.

    Article  CAS  Google Scholar 

  10. Umbach, J. L., Kramer, M. F., Jurak, I., Karnowski, H. W., Coen, D. M., & Cullen, B. R. (2008). MicroRNAs expressed by Herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature, 454, 780–783.

    CAS  Google Scholar 

  11. Bellare, P., & Ganem, D. (2009). Regulation of KSHV lytic switch protein expression by a virus-encoded microRNA: an evolutionary adaptation that fine-tunes lytic reactivation. Cell Host & Microbe, 6, 570–575.

    Article  CAS  Google Scholar 

  12. Lei, X., Bai, Z., Ye, F., et al. (2010). Regulation of NF-κB inhibitor IκBα and viral replication by a KSHV microRNA. Nature Cell Biology, 12, 193–199.

    Article  CAS  Google Scholar 

  13. Klinke, O., Feederle, R., & Delecluse, H. J. (2014). Genetics of Epstein-Barr virus microRNAs. Seminars in Cancer Biology, 26, 52–59.

    Article  CAS  Google Scholar 

  14. Ferracin, M., Veronese, A., & Negrini, M. (2010). Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert Review of Molecular Diagnostics, 10, 297–308.

    Article  CAS  Google Scholar 

  15. Pfeffer, S., Zavolan, M., Grässer, F. A., Chien, M., Russo, J. J., Ju, J., et al. (2004). Identification of virus-encoded microRNAs. Science, 304, 734–736.

    Article  CAS  Google Scholar 

  16. Gao, L., Ai, J., Xie, Z., Zhou, C., Liu, C., Zhang, H., & Shen, K. (2015). Dynamic expression of viral and cellular microRNAs in infectious mononucleosis caused by primary Epstein-Barr virus infection in children. Virology Journal, 12, 208. doi:10.1186/s12985-015-0441-y.

    Article  Google Scholar 

  17. Brase, J. C., Wuttig, D., Kuner, R., & Sultmann, H. (2010). Serum microRNAs as noninvasive biomarkers for cancer. Molecular Cancer, 9, 306–310.

    Article  CAS  Google Scholar 

  18. Moussay, E., Wang, K., Cho, J. H., et al. (2011). MicroRNA as biomarkers and regulators in B-cell chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 108, 6573–6578.

    Article  CAS  Google Scholar 

  19. Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B., & Bartel, D. P. (2003). Vertebrate microRNA genes. Science, 299, 1540–1545.

    Article  CAS  Google Scholar 

  20. Liang, R. Q., Li, W., Li, Y., et al. (2005). An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Research, 33, e17.

    Article  Google Scholar 

  21. Chen, C., Ridzon, D. A., Broomer, A. J., et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33, e179.

    Article  Google Scholar 

  22. Yao, Y., Nellåker, C., & Karlsson, H. (2006). Evaluation of minor groove binding probe and Taqman probe PCR assays: Influence of mismatches and template complexity on quantification. Molecular and Cellular Probes, 20, 311–316.

    Article  CAS  Google Scholar 

  23. Geha, R. S., Notarangelo, L. D., Casanova, J. L., et al. (2007). Primary immunodeficiency diseases: an update from the international union of immunological societies primary immunodeficiency diseases classification committee. Journal of Allergy and Clinical Immunology, 120, 776–794.

    Article  Google Scholar 

  24. Bergallo, M., Gambarino, S., Martino, S., et al. (2015). Comparison of two available RNA extraction protocols for microRNA amplification in serum samples. Journal of Clinical Laboratory Analysis. doi:10.1002/jcla.21848.

    Google Scholar 

  25. Huang, P. C., Chen, C. Y., Yang, F. Y., & Au, L. C. (2009). A multisampling reporter system for monitoring microRNA activity in the same population of cells. BioMed Research International, 10, 471–476.

    Google Scholar 

  26. Giulietti, A., Overbergh, L., Valckx, D., et al. (2001). An overview of real-time quantitative PCR: Applications to quantify cytokine gene expression. Methods, 25, 386–401.

    Article  CAS  Google Scholar 

  27. Kawano, Y., Iwata, S., Kawada, J., et al. (2013). Plasma viral microRNA profiles reveal potential biomarkers for chronic active Epstein-Barr virus infection. Journal of Infectious Diseases, 208, 771–779.

    Article  CAS  Google Scholar 

  28. Barth, S., Pfuhl, T., Mamiani, A., et al. (2008). Epstein-Barr virus-encoded micro- RNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Research, 36, 666–675.

    Article  CAS  Google Scholar 

  29. Nachmani, D., Stern-Ginossar, N., Sarid, R., & Mandelboim, O. (2009). Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host & Microbe, 5, 376–385.

    Article  CAS  Google Scholar 

  30. Choy, E. Y., Siu, K. L., Kok, K. H., et al. (2008). An Epstein-Barr virus-encoded micro- RNA targets PUMA to promote host cell survival. Journal of Experimental Medicine, 205, 2551–2560.

    Article  CAS  Google Scholar 

  31. Lung, R. W., Tong, J. H., Sung, Y. M., et al. (2009). Modulation of LMP2A expression by a newly identified Epstein-Barr virus-encoded microRNA miR-BART22. Neoplasia, 11, 1174–1184.

    Article  CAS  Google Scholar 

  32. Amoroso, R., Fitzsimmons, L., Thomas, W. A., Kelly, G. L., Rowe, M., & Bell, A. I. (2011). Quantitative studies of Epstein-Barr virus-encoded microRNAs provide novel insights into their regulation. Journal of Virology, 85, 996–1010. doi:10.1128/JVI.01528-10.

    Article  CAS  Google Scholar 

  33. Chan, J. Y., Gao, W., Ho, W. K., Wei, W. I., & Wong, T. S. (2012). Overexpression of Epstein-Barr virus-encoded microRNA-BART7 in undifferentiated nasopharyngeal carcinoma. Anticancer Research, 32, 3201–3210.

    Google Scholar 

  34. Cohen, J. I. (2000). Epstein-Barr virus infection. New England Journal of Medicine, 343, 481–492.

    Article  CAS  Google Scholar 

  35. Xia, T., O’Hara, A., Araujo, I., et al. (2008). EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-miR-BHRF1–3. Cancer Research, 68, 1436–1442.

    Article  CAS  Google Scholar 

  36. Xing, L., & Kieff, E. (2007). Epstein-Barr virus BHRF1 micro- and stable RNAs during latency III and after induction of replication. Journal of Virology, 81, 9967–9975.

    Article  CAS  Google Scholar 

  37. Pratt, Z. L., Kuzembayeva, M., Sengupta, S., & Sugden, B. (2009). The microRNAs of Epstein-Barr virus are expressed at dramatically differing levels among cell lines. Virology, 386, 387–397.

    Article  CAS  Google Scholar 

  38. Yuan, J., Cahir-McFarland, E., Zhao, B., & Kieff, E. (2006). Virus and cell RNAs expressed during Epstein-Barr virus replication. Journal of Virology, 80, 2548–2565.

    Article  CAS  Google Scholar 

  39. Cai, X., Schafer, A., Lu, S., Bilello, J. P., Desrosiers, R. C., Edwards, R., et al. (2006). Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog, 2, e23. doi:10.1371/journal.ppat.0020023.

    Article  Google Scholar 

  40. Cameron, J. E., Fewell, C., Yin, Q., McBride, J., Wang, X., Lin, Z., et al. (2008). Epstein-Barr virus growth/latency III program alters cellular microRNA expression. Virology, 382, 257–266. doi:10.1016/j.virol.2008.09.018.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the colleagues of the Department of Public Health and Pediatrics. The study was sponsored by Fondazione Giovanni Goria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Bergallo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergallo, M., Merlino, C., Montin, D. et al. Development of a Low-Cost Stem-Loop Real-Time Quantification PCR Technique for EBV miRNA Expression Analysis. Mol Biotechnol 58, 540–550 (2016). https://doi.org/10.1007/s12033-016-9951-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9951-0

Keywords

Navigation