Skip to main content
Log in

Biosensors for the Diagnosis of Celiac Disease: Current Status and Future Perspectives

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

An Erratum to this article was published on 18 June 2016

Abstract

Celiac disease (CD) is an autoimmune enteropathy initiated and sustained by the ingestion of gluten in genetically susceptible individuals. It is caused by a dysregulated immune response toward both dietary antigens, the gluten proteins of wheat, rye, and barley, and autoantigens, the enzyme tissue transglutaminase (TG2). The small intestine is the target organ. Although routine immunochemical protocols for a laboratory diagnosis of CD are available, faster, easier-to-use, and cheaper analytical devices for CD diagnosis are currently unavailable. This review focuses on biosensors, consisting of a physicochemical transducer and a bioreceptor, as promising analytical tools for diagnosis of CD and other diseases. Examples of recently developed biosensors as well as expectations for future lines of research and development in this field are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Di Sabatino, A., & Corazza, G. R. (2009). Coeliac disease. Lancet, 373, 1480–1493.

    Article  Google Scholar 

  2. Sollid, L. M., Qiao, S. W., Anderson, R. P., Gianfrani, C., & Koning, F. (2012). Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics, 64, 455–460.

    Article  Google Scholar 

  3. Scherf, K. A., Koehler, P., & Wieser, H. (2016). Gluten and wheat sensitivities—an overview. Journal of Cereal Science, 67, 2–11.

    Article  CAS  Google Scholar 

  4. Dieterich, W., Ehnis, T., Bauer, M., Donner, P., Volta, U., Riecken, E. O., & Schuppan, D. (1997). Identification of tissue transglutaminase as the autoantigen of celiac disease. Nature Medicine, 3, 797–801.

    Article  CAS  Google Scholar 

  5. Abadie, V., Sollid, L. M., Barreiro, L. B., & Jabri, B. (2011). Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annual Review of Immunology, 29, 493–525.

    Article  CAS  Google Scholar 

  6. Kang, J. Y., Kang, A. H., Green, A., Gwee, K. A., & Ho, K. Y. (2013). Systematic review: worldwide variation in the frequency of coeliac disease and changes over time. Alimentary Pharmacology & Therapeutics, 38, 226–245.

    Article  CAS  Google Scholar 

  7. Van de Kamer, J., Weijers, H., & Dicke, W. (1953). Coeliac disease. Some experiments on the cause of the harmful effect of wheat gliadin. Acta Paediatrica Scandinavica, 42, 223–231.

    Article  Google Scholar 

  8. Walker-Smith, J., Guandalini, S., Schmitz, J., Shmerling, D., & Visakorpi, J. (1990). Revised criteria for diagnosis of coeliac disease. Report of working group of European society of paediatric gastroenterology and nutrition. Archives of Disease in Childhood, 65, 909–911.

    Article  Google Scholar 

  9. Ludvigsson, J. F., Leffler, D. A., Bai, J. C., Biagi, F., Fasano, A., Green, P. H., et al. (2013). The Oslo definitions for coeliac disease and related terms. Gut, 62, 43–52.

    Article  Google Scholar 

  10. Husby, S., Koletzko, S., Korponay-Szabo, I. R., Mearin, M. L., Phillips, A., Shamir, R., et al. (2012). European society for pediatric gastroenterology, hepatology, and nutrition guidelines for the diagnosis of coeliac disease. Journal of Pediatric Gastroenterology and Nutrition, 54, 136–160.

    Article  CAS  Google Scholar 

  11. Molina-Infante, J., Santolaria, S., Sanders, D. S., & Fernández-Bañares, F. (2015). Systematic review: noncoeliac gluten sensitivity. Alimentary Pharmacology & Therapeutics, 41, 807–820.

    Article  CAS  Google Scholar 

  12. Hopper, A. D., Hadjivassiliou, M., Hurlstone, D. P., Lobo, A. J., McAlindon, M. E., Egner, W., et al. (2008). What is the role of serologic testing in celiac disease? A prospective, biopsy-confirmed study with economic analysis. Clinical Gastroenterology and Hepatology, 6, 314–320.

    Article  Google Scholar 

  13. Clark, L. C., & Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 102, 29–45.

    Article  CAS  Google Scholar 

  14. Lane, J. E., Shivers, J. P., & Zisser, H. (2013). Continuous glucose monitors: current status and future developments. Current Opinion in Endocrinology, Diabetes, and Obesity, 20, 106–111.

    Article  CAS  Google Scholar 

  15. Nichols, S. P., Koh, A., Storm, W. L., Shin, J. H., & Schoenfisch, M. H. (2013). Biocompatible materials for continuous glucose monitoring devices. Chemical Reviews, 113, 2528–2549.

    Article  CAS  Google Scholar 

  16. Grieshaber, D., MacKenzie, D., Vörös, J., & Reimhult, E. (2008). Electrochemical biosensors—sensor principles and architectures. Sensors, 8, 1400–1458.

    Article  CAS  Google Scholar 

  17. Pohanka, M. (2015). Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chemical Papers, 69, 4–16.

    CAS  Google Scholar 

  18. Pohanka, M., & Skladal, P. (2008). Electrochemical biosensors—principles and applications. Journal of Applied Biomedicine, 6, 57–64.

    CAS  Google Scholar 

  19. Thevenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. (1999). Electrochemical biosensors: recommended definitions and classification. Pure and Applied Chemistry, 71, 2333–2348.

    Article  CAS  Google Scholar 

  20. Brecht, A., & Gauglitz, G. (1995). Optical probes and transducers. Biosensors & Bioelectronics, 10, 923–936.

    Article  CAS  Google Scholar 

  21. Pohanka, M. (2013). Cholinesterases in biorecognition and biosensor construction, a review. Analytical Letters, 46, 1849–1868.

    Article  CAS  Google Scholar 

  22. Sipova, H., & Homola, J. (2013). Surface plasmon resonance sensing of nucleic acids: a review. Analytica Chimica Acta, 773, 9–23.

    Article  CAS  Google Scholar 

  23. Mitchell, J. (2010). Small molecule immunosensing using surface plasmon resonance. Sensors, 10, 7323–7346.

    Article  CAS  Google Scholar 

  24. Cheng, S. S., Hideshima, S., Kuroiwa, S., Nakanishi, T., & Osaka, T. (2015). Label-free detection of tumor markers using field effect transistor (FET)-based biosensors for lung cancer diagnosis. Sensors and Actuators B: Chemical, 212, 329–334.

    Article  CAS  Google Scholar 

  25. Lin, C. W., Wei, K. C., Liao, S. S., Huang, C. Y., Sun, C. L., Wu, P. J., et al. (2015). A reusable magnetic graphene oxide-modified biosensor for vascular endothelial growth factor detection in cancer diagnosis. Biosensors & Bioelectronics, 67, 431–437.

    Article  CAS  Google Scholar 

  26. Lee, S., Jo, H., Her, J., Lee, H. Y., & Ban, C. (2015). Ultrasensitive electrochemical detection of engrailed-2 based on homeodomain-specific DNA probe recognition for the diagnosis of prostate cancer. Biosensors & Bioelectronics, 66, 32–38.

    Article  CAS  Google Scholar 

  27. Cecchetto, J., Carvalho, F. C., Santos, A., Fernandes, F. C. B., & Bueno, P. R. (2015). An impedimetric biosensor to test neat serum for dengue diagnosis. Sensors and Actuators B: Chemical, 213, 150–154.

    Article  CAS  Google Scholar 

  28. Pohanka, M., & Skladal, P. (2007). Serological diagnosis of tularemia in mice using the amperometric immunosensor. Electroanalysis, 19, 2507–2512.

    Article  CAS  Google Scholar 

  29. Jiang, Y., Tan, C. Y., Tan, S. Y., Wong, M. S. F., Chen, Y. F., Zhang, L., et al. (2015). SAW sensor for Influenza A virus detection enabled with efficient surface functionalization. Sensors and Actuators B: Chemical, 209, 78–84.

    Article  CAS  Google Scholar 

  30. Hamidi, S. V., Ghourchian, H., & Tavoosidana, G. (2015). Real-time detection of H5N1 influenza virus through hyperbranched rolling circle amplification. Analyst, 140, 1502–1509.

    Article  CAS  Google Scholar 

  31. Haddache, F., Le Goff, A., Reuillard, B., Gorgy, K., Gondran, C., Spinelli, N., et al. (2014). Label-free photoelectrochemical detection of double-stranded HIV DNA by means of a metallointercalator-functionalized electrogenerated polymer. Chemistry, 20, 15555–15560.

    Article  CAS  Google Scholar 

  32. Gong, Q. J., Yang, H. Y., Dong, Y. Y., & Zhang, W. C. (2015). A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on electrochemically reduced graphene oxide. Analytical Methods, 7, 2554–2562.

    Article  CAS  Google Scholar 

  33. Soler, M., Mesa-Antunez, P., Estevez, M. C., Ruiz-Sanchez, A. J., Otte, M. A., Sepulveda, B., et al. (2015). Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis. Biosensors & Bioelectronics, 66, 115–123.

    Article  CAS  Google Scholar 

  34. Chardin, H., Mercier, K., Frydman, C., & Vollmer, N. (2014). Surface plasmon resonance imaging: A method to measure the affinity of the antibodies in allergy diagnosis. Journal of Immunological Methods, 405, 23–28.

    Article  CAS  Google Scholar 

  35. Rubio-Tapia, A., Hill, I. D., Kelly, C. P., Calderwood, A. H., Murray, J. A., & American College of Gastroenterology. (2013). ACG clinical guidelines: diagnosis and management of celiac disease. American Journal of Gastroenterology, 108, 656–676.

    Article  CAS  Google Scholar 

  36. Scherf, K. A., Koehler, P., & Wieser, H. (2015). Electrochemical immunosensors for the diagnosis of celiac disease. Advances in Chemical Engineering and Science, 5, 83–95.

    Article  Google Scholar 

  37. Balkenhohl, T., & Lisdat, F. (2007). An impedimetric immunosensor for the detection of autoantibodies directed against gliadins. Analyst, 132, 314–322.

    Article  CAS  Google Scholar 

  38. Corres, J. M., Matias, I. R., Bravo, J., & Arregui, F. J. (2008). Tapered optical fiber biosensor for the detection of anti-gliadin antibodies. Sensors and Actuators B: Chemical, 135, 166–171.

    Article  CAS  Google Scholar 

  39. Socorro, A. B., del Villar, I., Corres, J. M., Arregui, F. J., & Matias, I. R. (2014). Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures. Sensors and Actuators B: Chemical, 200, 53–60.

    Article  CAS  Google Scholar 

  40. Pereira, S. V., Raba, J., & Messina, G. A. (2010). IgG anti-gliadin determination with an immunological microfluidic system applied to the automated diagnostic of the celiac disease. Analytical and Bioanalytical Chemistry, 396, 2921–2927.

    Article  CAS  Google Scholar 

  41. Rosales-Rivera, L. C., Acero-Sanchez, J. L., Lozano-Sanchez, P., Katakis, I., & O’Sullivan, C. K. (2011). Electrochemical immunosensor detection of antigliadin antibodies from real human serum. Biosensors & Bioelectronics, 26, 4471–4476.

    Article  CAS  Google Scholar 

  42. Neves, M. M. P. S., Gonzalez-Garcia, M. B., Santos-Silva, A., & Costa-Garcia, A. (2012). Voltammetric immunosensor for the diagnosis of celiac disease based on the quantification of anti-gliadin antibodies. Sensors and Actuators B: Chemical, 163, 253–259.

    Article  CAS  Google Scholar 

  43. Neves, M. M. P. S., Gonzalez-Garcia, M. B., Nouws, H. P. A., & Costa-Garcia, A. (2013). An electrochemical deamidated gliadin antibody immunosensor for celiac disease clinical diagnosis. Analyst, 138, 1956–1958.

    Article  CAS  Google Scholar 

  44. Dørum, S., Qiao, S. W., Sollid, L. M., & Fleckenstein, B. (2009). A quantitative analysis of transgluaminase 2-mediated deamidation of gluten peptides: implications for the T-cell response in celiac disease. Journal of Proteome Research, 8, 1748–1755.

    Article  Google Scholar 

  45. Costantini, F., Nascetti, A., Scipinotti, R., Domenici, F., Sennato, S., Gazza, L., et al. (2014). On-chip detection of multiple serum antibodies against epitopes of celiac disease by an array of amorphous silicon sensors. RSC Advances, 4, 2073–2080.

    Article  CAS  Google Scholar 

  46. Balkenhohl, T., & Lisdat, F. (2007). Screen-printed electrodes as impedimetric immunosensors for the detection of anti-transglutaminase antibodies in human sera. Analytica Chimica Acta, 597, 50–57.

    Article  CAS  Google Scholar 

  47. Pividori, M. I., Lermo, A., Bonanni, A., Alegret, S., & del Valle, M. (2009). Electrochemical immunosensor for the diagnosis of celiac disease. Analytical Biochemistry, 388, 229–234.

    Article  CAS  Google Scholar 

  48. Dulay, S., Lozano-Sanchez, P., Iwuoha, E., Katakis, I., & O’Sullivan, C. K. (2011). Electrochemical detection of celiac disease-related anti-tissue transglutaminase antibodies using thiol based surface chemistry. Biosensors & Bioelectronics, 26, 3852–3856.

    Article  CAS  Google Scholar 

  49. West, N., Baker, P. G. L., Arotiba, O. A., Hendricks, N. R., Baleg, A. A., Waryo, T. T., et al. (2011). Overoxidized polypyrrole incorporated with gold nanoparticles as platform for impedimetric anti-transglutaminase immunosensor. Analytical Letters, 44, 1956–1966.

    Article  CAS  Google Scholar 

  50. Neves, M. M. P. S., Gonzalez-Garcia, M. B., Nouws, H. P. A., & Costa-Garcia, A. (2012). Celiac disease detection using a transglutaminase electrochemical immunosensor fabricated on nanohybrid screen-printed carbon electrodes. Biosensors & Bioelectronics, 31, 95–100.

    Article  CAS  Google Scholar 

  51. Adornetto, G., Volpe, G., de Stefano, A., Martini, S., Gallucci, G., Manzoni, A., et al. (2012). An ELIME assay for the rapid diagnosis of coeliac disease. Analytical and Bioanalytical Chemistry, 403, 1191–1194.

    Article  CAS  Google Scholar 

  52. Kergaravat, S. V., Beltramino, L., Garnero, N., Trotta, L., Wagener, M., Pividori, M. I., & Hernandez, S. R. (2013). Electrochemical magneto immunosensor for the detection of anti-TG2 antibody in celiac disease. Biosensors & Bioelectronics, 48, 203–209.

    Article  CAS  Google Scholar 

  53. Martin-Yerga, D., Gonzalez-Garcia, M. B., & Costa-Garcia, A. (2014). Electrochemical immunosensor for anti-tissue transglutaminase antibodies based on the in situ detection of quantum dots. Talanta, 130, 598–602.

    Article  CAS  Google Scholar 

  54. Martin-Yerga, D., & Costa-Garcia, A. (2015). Towards a blocking-free electrochemical immunosensing strategy for anti-transglutaminase antibodies using screen-printed electrodes. Bioelectrochemistry, 105, 88–94.

    Article  CAS  Google Scholar 

  55. Singh, K. V., Bhura, D. K., Nandamuri, G., Whited, A. M., Evans, D., King, J., & Solanki, P. (2011). Nanoparticle-enhanced sensitivity of a nanogap-interdigitated electrode array impedimetric biosensor. Langmuir, 27, 13931–13939.

    Article  CAS  Google Scholar 

  56. Pallav, K., Leffler, D. A., Bennett, M., Tariq, S., Xu, H., Kabbani, T., et al. (2012). Open conformation tissue transglutaminase testing for celiac dietary assessment. Digestive and Liver Disease, 44, 375–378.

    Article  CAS  Google Scholar 

  57. Giannetto, M., Mattarozzi, M., Umilta, E., Manfredi, A., Quaglia, S., & Careri, M. (2014). An amperometric immunosensor for diagnosis of celiac disease based on covalent immobilization of open conformation tissue transglutaminase for determination of anti-tTG antibodies in human sera. Biosensors & Bioelectronics, 62, 325–330.

    Article  CAS  Google Scholar 

  58. Manfredi, A., Mattarozzi, M., Giannetto, M., & Careri, M. (2014). Piezoelectric immunosensor based on antibody recognition of immobilized open-tissue transglutaminase: An innovative perspective on diagnostic devices for celiac disease. Sensors and Actuators B: Chemical, 201, 300–307.

    Article  CAS  Google Scholar 

  59. O’Sullivan, C. K., Vaughan, R., & Guilbault, G. G. (1999). Piezoelectric immunosensors—theory and applications. Analytical Letters, 32, 2352–2377.

    Google Scholar 

  60. Cennamo, N., Varriale, A., Pennacchio, A., Staiano, M., Massarotti, D., Zeni, L., & D’Auria, S. (2013). An innovative plastic optical fiber-based biosensor for new bio/applications. The case of celiac disease. Sensors and Actuators B: Chemical, 176, 1008–1014.

    Article  CAS  Google Scholar 

  61. Homola, J., Yee, S. S., & Gauglitz, G. (1999). Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 54, 3–15.

    Article  CAS  Google Scholar 

  62. Hoa, X. D., Kirk, A. G., & Tabrizian, M. (2007). Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosensors & Bioelectronics, 23, 151–160.

    Article  CAS  Google Scholar 

  63. Mariani, S., & Minunni, M. (2014). Surface plasmon resonance applications in clinical analysis. Analytical and Bioanalytical Chemistry, 406, 2303–2323.

    Article  CAS  Google Scholar 

  64. Habtamu, H. B., Sentic, M., Silvestrini, M., De Leo, L., Not, T., Arbault, S., et al. (2015). A sensitive electrochemiluminescence immunosensor for celiac disease diagnosis based on nanoelectrode ensembles. Analytical Chemistry, 87, 12080–12087.

    Article  CAS  Google Scholar 

  65. Neves, M. M. P. S., Gonzalez-Garcia, M. B., Delerue-Matos, C., & Costa-Garcia, A. (2013). Multiplexed electrochemical immunosensor for detection of celiac disease serological markers. Sensors and Actuators B: Chemical, 187, 33–39.

    Article  CAS  Google Scholar 

  66. Bertok, T., Sefcovicova, J., Gemeiner, P., & Tkac, J. (2012). Development and current trends in manufacture of nanostructure biosensors. Chemicke Listy, 106, 174–181.

    CAS  Google Scholar 

  67. Zhong, G. X., Lan, R. L., Zhang, W. X., Fu, F. H., Sun, Y. M., Peng, H. P., et al. (2015). Sensitive electrochemical immunosensor based on three-dimensional nanostructure gold electrode. International Journal of Nanomedicine, 10, 2219–2228.

    Article  CAS  Google Scholar 

  68. Jia, H. Y., Gao, P. C., Ma, H. M., Wu, D., Du, B., & Wei, Q. (2015). Preparation of Au-Pt nanostructures by combining top-down with bottom-up strategies and application in label-free electrochemical immunosensor for detection of NMP22. Bioelectrochemistry, 101, 22–27.

    Article  CAS  Google Scholar 

  69. Cheki, M., Moslehi, M., & Assadi, M. (2013). Marvelous applications of quantum dots. European Review for Medical and Pharmacological Sciences, 17, 1141–1148.

    CAS  Google Scholar 

  70. Kairdolf, B. A., Smith, A. M., Stokes, T. H., Wang, M. D., Young, A. N., & Nie, S. (2013). Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annual Review of Analytical Chemistry, 6, 143–162.

    Article  CAS  Google Scholar 

  71. Huang, T. Y., Meng, Q. M., & Jie, G. F. (2015). Silver nanowires-based signal amplification for CdSe quantum dots electrochemiluminescence immunoassay. Biosensors & Bioelectronics, 66, 84–88.

    Article  CAS  Google Scholar 

  72. Pamme, N. (2006). Magnetism and microfluidics. Lab on a Chip, 6, 24–38.

    Article  CAS  Google Scholar 

  73. Ricci, F., Adornetto, G., & Palleschi, G. (2012). A review of experimental aspects of electrochemical immunosensors. Electrochimica Acta, 84, 74–83.

    Article  CAS  Google Scholar 

  74. Laube, T., Kergaravat, S. V., Fabiano, S. N., Hernandez, S. R., Alegret, S., & Pividori, M. I. (2011). Magneto immunosensor for gliadin detection in gluten-free foodstuff: Towards food safety for celiac patients. Biosensors & Bioelectronics, 27, 46–52.

    Article  CAS  Google Scholar 

  75. Scherf, K. A., & Poms, R. E. (2016). Recent developments in analytical methods for tracing gluten. Journal of Cereal Science, 67, 112–122.

    Article  CAS  Google Scholar 

  76. Soler, M., Estevez, M.-C., Moreno, Mde. L., Cebolla, A., & Lechuga, L. M. (2016). Label-free SPR detection of gluten peptides in urine for non-invasive celiac disease follow-up. Biosensors & Bioelectronics, 79, 158–164.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kruzliak.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scherf, K.A., Ciccocioppo, R., Pohanka, M. et al. Biosensors for the Diagnosis of Celiac Disease: Current Status and Future Perspectives. Mol Biotechnol 58, 381–392 (2016). https://doi.org/10.1007/s12033-016-9940-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9940-3

Keywords

Navigation